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3.4.3 Interpolation Using BMO

We continue this section by proving an interpolation result in which the space L∞ is
replaced by BMO. The sharp function plays a key role in the following theorem.

Theorem 3.4.7. Let 1 ≤ p0 < ∞. Let T be a linear operator that maps Lp0(Rn) to
Lp0(Rn) with bound A0, and L∞(Rn) to BMO(Rn) with bound A1. Then for all p
with p0 < p < ∞ there is a constant Cn,p,p0 such that for all f ∈ Lp we have

∥∥T ( f )
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Lp(Rn)
≤Cn,p,p0 A

p0
p
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1− p0

p
1

∥∥ f
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Lp(Rn)
. (3.4.12)

Remark 3.4.8. In certain applications, the operator T may not be a priori defined
on all of Lp0 +L∞ but only on some subspace of it. In this case one may state that
the hypotheses and the conclusion of the preceding theorem hold for a subspace of
these spaces.

Proof. We consider the operator

S( f ) = M#(T ( f ))

defined for f ∈ Lp0 +L∞. It is easy to see that S is a sublinear operator. We prove
that S maps L∞ to itself and Lp0 to itself if p0 > 1 or L1 to L1,∞ if p0 = 1. For f ∈ Lp0

we have ∥∥S( f )
∥∥
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where the three Lp0 norms on the top line should be replaced by L1,∞ if p0 = 1. For
f ∈ L∞ one has∥∥S( f )
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Interpolating between these estimates using Theorem 1.3.2 in [156], we deduce
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for all f ∈ Lp, where p0 < p < ∞.
Consider now a function h ∈ Lp∩Lp0 . In the case p0 > 1, Md(T (h))∈ Lp0 ; hence

Corollary 3.4.6 is applicable and gives
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Density yields the same estimate for all f ∈ Lp(Rn). If p0 = 1, one applies the same
idea but needs the endpoint estimate of Exercise 3.4.6, since Md(T (h)) ∈ L1,∞. □
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3.4.4 Estimates for Singular Integrals Involving the Sharp
Function

We use the sharp function to obtain pointwise estimates for singular integrals. These
enable us to recover previously obtained estimates for singular integrals, but also to
deduce a new endpoint boundedness result from L∞ to BMO.

We recall some facts about singular integral operators. Suppose that K is a func-
tion defined on Rn \{0} that satisfies

|K(x)| ≤ A1|x|−n , (3.4.13)

|K(x− y)−K(x)| ≤ A2|y|δ |x|−n−δ when |x| ≥ 2|y|> 0, (3.4.14)

sup
r<R<∞

∣∣∣∫
r≤|x|≤R

K(x)dx
∣∣∣ ≤ A3 . (3.4.15)

Let W be a tempered distribution that coincides with K on Rn \{0} and let T be the
linear operator given by convolution with W .

Under these assumptions we have that T is L2 bounded with norm at most a
constant multiple of A1 +A2 +A3 (Theorem 5.4.1 in [156]), and hence it is also Lp

bounded with a similar norm on Lp for 1 < p < ∞ (Theorem 5.3.3 in [156]).

Theorem 3.4.9. Let T be given by convolution with a distribution W that coincides
with a function K on Rn \ {0} satisfying (3.4.14). Assume that T has an extension
that is L2 bounded with a norm B. Then there is a constant Cn such that for any s > 1
the estimate

M#(T ( f ))(x)≤Cn(A2 +B) max(s,(s−1)−1)M(| f |s) 1
s (x) (3.4.16)

is valid for all f in
⋃

s≤p<∞ Lp and all x ∈ Rn.

Proof. In view of Proposition 3.4.2 (2), given any cube Q, it suffices to find a con-
stant aQ such that

1
|Q|

∫
Q
|T ( f )(y)−aQ|dy ≤Cn max(s,(s−1)−1)(A2 +B)M(| f |s) 1

s (x) (3.4.17)

for almost all x ∈ Q. To prove this estimate we employ a well-known theme. We
write f = f 0

Q + f ∞
Q , where f 0

Q = f χ6
√

nQ and f ∞
Q = f χ(6

√
nQ)c . Here Q∗ =6

√
nQ

denotes the cube that is concentric with Q, has sides parallel to those of Q, and has
side length 6

√
nℓ(Q), where ℓ(Q) is the side length of Q.

We now fix an f in
⋃

s≤p<∞ Lp and we select aQ = T ( f ∞
Q )(x). Then aQ is finite

(and thus well defined) for all x ∈ Q. Indeed, for all x ∈ Q, (3.4.13) yields
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