$$\frac{w(\left\{x \in Q_j : M_d(f)(x) > 2\lambda, M^{\#}(f)(x) \leq \gamma\lambda\right\})}{w(Q_j)} \leq C_2 (2^n \gamma)^{\varepsilon_0}.$$

Summing over j we obtain (3.4.3) with $C = C_2 2^{n\epsilon_0}$.

Good lambda inequalities can be used to obtain L^p bounds for quantities they contain. For example, we use Theorem 3.4.4 to obtain the equivalence of the L^p norms of $M_d(f)$ and $M^{\#}(f)$. Since $M^{\#}(f)$ is pointwise controlled by $2M_c(f)$ and

$$||M_c(f)||_{L^p} \le C(p,n)||f||_{L^p} \le C(p,n)||M_d(f)||_{L^p},$$

we have the estimate

$$||M^{\#}(f)||_{L^{p}(\mathbf{R}^{n})} \le 2C(p,n)||M_{d}(f)||_{L^{p}(\mathbf{R}^{n})}$$

for all f in $L^p(\mathbf{R}^n)$. The next theorem says that the converse estimate is valid.

Theorem 3.4.5. Let $0 < p_0 \le p < \infty$. Then there is a constant $C_n(p)$ such that for all functions f in $L^1_{loc}(\mathbf{R}^n)$ with $M_d(f) \in L^{p_0}(\mathbf{R}^n)$ we have

$$\|M_d(f)\|_{L^p(\mathbf{R}^n)} \le C_n(p) \|M^{\#}(f)\|_{L^p(\mathbf{R}^n)}.$$
 (3.4.9)

If $w \in A_q$ for some q satisfying $1 \le q \le \infty$, there is a constant $C_n(p,q,[w]_{A_q})$, such that if $M_d(f) \in L^{p_0}(\mathbf{R}^n, w)$, then

$$||M_d(f)||_{L^p(\mathbf{R}^n,w)} \le C_n(p,q,[w]_{A_q}) ||M^{\#}(f)||_{L^p(\mathbf{R}^n,w)}.$$
 (3.4.10)

Proof. Fix $p \ge p_0$ with $p < \infty$. For a positive real number N we set

$$I_N = \int_0^N p\lambda^{p-1} | \left\{ x \in \mathbf{R}^n : M_d(f)(x) > \lambda \right\} | d\lambda.$$

We note that I_N is finite, since $p \ge p_0$ and it is bounded by

$$\frac{pN^{p-p_0}}{p_0} \int_0^N p_0 \lambda^{p_0-1} |\{x \in \mathbf{R}^n : M_d(f)(x) > \lambda\}| d\lambda \le \frac{pN^{p-p_0}}{p_0} ||M_d(f)||_{L^{p_0}}^{p_0} < \infty.$$

We now write

$$I_N = 2^p \int_0^{\frac{N}{2}} p\lambda^{p-1} \left| \left\{ x \in \mathbf{R}^n : M_d(f)(x) > 2\lambda \right\} \right| d\lambda$$

and we use Theorem 3.4.4 to obtain the following sequence of inequalities:

$$I_{N} \leq 2^{p} \int_{0}^{\frac{N}{2}} p \lambda^{p-1} | \{ x \in \mathbf{R}^{n} : M_{d}(f)(x) > 2\lambda, M^{\#}(f)(x) \leq \gamma \lambda \} | d\lambda + 2^{p} \int_{0}^{\frac{N}{2}} p \lambda^{p-1} | \{ x \in \mathbf{R}^{n} : M^{\#}(f)(x) > \gamma \lambda \} | d\lambda$$