(2) For all cubes Q in \mathbb{R}^n we have

$$\frac{1}{2}M^{\#}(f)(x) \leq \sup_{Q\ni x} \inf_{a\in \mathbf{C}} \frac{1}{|Q|} \int_{Q} |f(y) - a| \, dy \leq M^{\#}(f)(x).$$

- (3) $M^{\#}(|f|) \leq 2M^{\#}(f)$.
- (4) We have $M^{\#}(f+g) \leq M^{\#}(f) + M^{\#}(g)$.

Proof. The proof of (1) is trivial. To prove (2) we fix $\varepsilon > 0$ and for any cube Q we pick a constant a_O such that

$$\frac{1}{|Q|} \int_{Q} |f(y) - a_{Q}| \, dy \leq \inf_{a \in Q} \frac{1}{|Q|} \int_{Q} |f(y) - a| \, dy + \varepsilon.$$

Then

$$\begin{split} \frac{1}{|Q|} \int_{\mathcal{Q}} \left| f(y) - \operatorname{Avg}_{\mathcal{Q}} f \right| dy & \leq \frac{1}{|Q|} \int_{\mathcal{Q}} \left| f(y) - a_{\mathcal{Q}} \right| dy + \frac{1}{|Q|} \int_{\mathcal{Q}} \left| \operatorname{Avg}_{\mathcal{Q}} f - a_{\mathcal{Q}} \right| dy \\ & \leq \frac{1}{|Q|} \int_{\mathcal{Q}} \left| f(y) - a_{\mathcal{Q}} \right| dy + \frac{1}{|Q|} \int_{\mathcal{Q}} \left| f(y) - a_{\mathcal{Q}} \right| dy \\ & \leq 2 \inf_{a \in \mathcal{Q}} \frac{1}{|Q|} \int_{\mathcal{Q}} \left| f(y) - a \right| dy + 2\varepsilon \,. \end{split}$$

Taking the supremum over all cubes Q in \mathbb{R}^n , we obtain the first inequality in (2), since $\varepsilon > 0$ was arbitrary. The other inequality in (2) is simple. The proofs of (3) and (4) are immediate.

We saw that $M^{\#}(f) \leq 2M_c(f)$, which implies that

$$||M^{\#}(f)||_{L^{p}} \le C_{n} p(p-1)^{-1} ||f||_{L^{p}}$$
 (3.4.1)

for $1 . Thus the sharp function of an <math>L^p$ function is also in L^p whenever 1 . The fact that the converse inequality is also valid is one of the main results in this section. We obtain this estimate via a distributional inequality for the sharp function called a*good lambda*inequality.

3.4.2 A Good Lambda Estimate for the Sharp Function

A useful tool in obtaining the converse inequality to (3.4.1) is the dyadic maximal function.

Definition 3.4.3. A dyadic cube is a set of the form $\prod_{j=1}^{m} [m_j 2^{-k}, (m_j + 1) 2^{-k})$, where $m_1, \ldots, m_n, k \in \mathbb{Z}$. Given a locally integrable function f on \mathbb{R}^n , we define its *dyadic maximal function* $M_d(f)$ by