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(2) For all cubes Q in R" we have
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(3) M*(|f]) < 2M*(f).
(4) We have M*(f + g) < M*(f) +M*(g).

Proof. The proof of (1) is trivial. To prove (2) we fix € > 0 and for any cube Q we
pick a constant ag such that
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Taking the supremum over all cubes Q in R”, we obtain the first inequality in (2),
since € > 0 was arbitrary. The other inequality in (2) is simple. The proofs of (3)

and (4) are immediate. U

We saw that M#(f) < 2M_(f), which implies that
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for 1 < p < co. Thus the sharp function of an L? function is also in L” whenever
1 < p < . The fact that the converse inequality is also valid is one of the main
results in this section. We obtain this estimate via a distributional inequality for the
sharp function called a good lambda inequality.

3.4.2 A Good Lambda Estimate for the Sharp Function

A useful tool in obtaining the converse inequality to (3.4.1) is the dyadic maximal
function.

Definition 3.4.3. A dyadic cube is a set of the form [T [m;27%, (m; + 1)27%),
where my,...,m,,k € Z. Given a locally integrable function f on R”, we define
its dyadic maximal function My(f) by



