3.3.2. Let $x_0 \in \mathbf{R}^n$ and $\mu = \delta_{(x_0,1)}$ be the Dirac mass at the point $(x_0,1)$. Show that μ is Carleson measure and compute $\|\mu\|_{\mathscr{C}}^{\text{cylinder}}$ and $\|\mu\|_{\mathscr{C}}$. Which of these norms is larger?

3.3.3. Define *conical* and *hemispherical* tents over balls in \mathbb{R}^n as well as *pyramidal* tents over cubes in \mathbb{R}^n and define the expressions $\|\mu\|_{\mathscr{C}}^{\text{cone}}$, $\|\mu\|_{\mathscr{C}}^{\text{hemisphere}}$, and $\|\mu\|_{\mathscr{C}}^{\text{pyramid}}$. Show that

$$\|\mu\|_{\mathscr{C}}^{\operatorname{cone}} \approx \|\mu\|_{\mathscr{C}}^{\operatorname{hemisphere}} \approx \|\mu\|_{\mathscr{C}}^{\operatorname{pyramid}} \approx \|\mu\|_{\mathscr{C}},$$

where all the implicit constants in the previous estimates depend only on the dimension.

3.3.4. Suppose that Φ has a radial, bounded, symmetrically decreasing integrable majorant. Set $F(x,t) = (f * \Phi_t)(x)$, where *f* is a locally integrable function on \mathbb{R}^n . Prove that

$$F^*(x) \le C_{\mathbf{\Phi}} M(f)(x) \,,$$

where *M* is the Hardy–Littlewood maximal operator and C_{Φ} is a constant that depends only on the decreasing majorant of Φ .

[*Hint:* If $\varphi(|x|)$ is the claimed majorant of $\Phi(x)$, then the function $\psi(|x|) = \varphi(0)$ for $|x| \le 1$ and $\psi(|x|) = \varphi(|x| - 1)$ for $|x| \ge 1$ is a majorant for the function $\Psi(x) = \sup_{|u| \le 1} |\Phi(x-u)|$.]

3.3.5. Let *F* be a function on \mathbb{R}^{n+1}_+ , let *F*^{*} be the nontangential maximal function derived from *F*, and let $\mu \ge 0$ be a measure on \mathbb{R}^{n+1}_+ . Prove that

$$||F||_{L^{r}(\mathbf{R}^{n+1}_{+},\mu)} \leq C_{n}^{1/r} \left(\int_{\mathbf{R}^{n}} \mathscr{C}(\mu)(x) F^{*}(x)^{r} dx \right)^{1/r},$$

where C_n is the constant of Theorem 3.3.5 and $0 < r < \infty$.

3.3.6. (a) Given *A* a closed subset of \mathbf{R}^n and $0 < \gamma < 1$, define

$$A_{\gamma}^* = \left\{ x \in \mathbf{R}^n : \inf_{r>0} \frac{|A \cap B(x,r)|}{|B(x,r)|} \ge \gamma \right\}.$$

Show that A_{γ}^* is a closed subset of A and that it satisfies

$$|(A_{\gamma}^*)^c| \leq \frac{3^n}{1-\gamma} |A^c|.$$

Hint: Consider the Hardy–Littlewood maximal function of χ_{A^c} .

182