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and let δ2− j(t) be Dirac mass at the point t = 2− j. Then there is a constant Cn,δ
such that

dµ(x, t) = ∑
j∈Z
|(Ψ2− j ∗b)(x)|2 dxδ2− j(t)

is a Carleson measure on Rn+1
+ with norm at most Cn,δ (A+B)2‖b‖2

BMO.
(b) Suppose that

sup
ξ∈Rn

∫
∞

0
|Ψ̂(tξ )|2 dt

t
≤ B2 < ∞ . (3.3.14)

Then the continuous version dν(x, t) of dµ(x, t) defined by

dν(x, t) = |(Ψt ∗b)(x)|2 dx
dt
t

is a Carleson measure on Rn+1
+ with norm at most Cn,δ (A+B)2‖b‖2

BMO for some
constant Cn,δ .
(c) Let δ ,A > 0. Suppose that {Kt}t>0 are functions on Rn×Rn that satisfy

|Kt(x,y)| ≤
Atδ

(t + |x− y|)n+δ
(3.3.15)

for all t > 0 and all x,y ∈ Rn. Let Rt be the linear operator

Rt( f )(x) =
∫

Rn
Kt(x,y) f (y)dy ,

which is well defined for all f ∈ ⋃1≤p≤∞ Lp(Rn). Suppose that Rt(1) = 0 for all
t > 0 and that there is a constant B > 0 such that∫

∞

0

∫
Rn

∣∣Rt( f )(x)
∣∣2 dxdt

t
≤ B2∥∥ f

∥∥2
L2(Rn)

(3.3.16)

for all f ∈ L2(Rn). Then for all b in BMO the measure∣∣Rt(b)(x)
∣∣2 dxdt

t

is Carleson with norm at most a constant multiple of (A+B)2‖b‖2
BMO.

We note that if, in addition to (3.3.12), the function Ψ has mean value zero and
satisfies |∇Ψ(x)| ≤ A(1+ |x|)−n−δ , then (3.3.13) and (3.3.14) hold and therefore
conclusions (a) and (b) of Theorem 3.3.8 follow. (See for instance [156, Page 422]).

Proof. We prove (a). The measure µ is defined so that for every µ-integrable func-
tion F on Rn+1

+ we have∫
Rn+1
+

F(x, t)dµ(x, t) = ∑
j∈Z

∫
Rn
|(Ψ2− j ∗b)(x)|2F(x,2− j)dx. (3.3.17)
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For a cube Q in Rn we let Q∗ be the cube with the same center and orientation whose
side length is 3

√
n`(Q), where `(Q) is the side length of Q. Fix a cube Q in Rn, take

F to be the characteristic function of the tent of Q, and split b as

b =
(
b−Avg

Q
b
)
χQ∗ +

(
b−Avg

Q
b
)
χ(Q∗)c +Avg

Q
b.

Since Ψ has mean value zero, Ψ2− j ∗AvgQ b = 0. Then (3.3.17) gives

µ(T (Q)) = ∑
2− j≤`(Q)

∫
Q
|∆ j(b)(x)|2 dx≤ 2Σ1 +2Σ2,

where

Σ1 = ∑
j∈Z

∫
Rn

∣∣∆ j
(
(b−Avg

Q
b)χQ∗

)
(x)
∣∣2 dx,

Σ2 = ∑
2− j≤`(Q)

∫
Q

∣∣∆ j
(
(b−Avg

Q
b)χ(Q∗)c

)
(x)
∣∣2 dx.

Using Plancherel’s theorem and (3.3.13), we obtain

Σ1 ≤ sup
ξ

∑
j∈Z
|Ψ̂(2− j

ξ )|2
∫

Rn

∣∣((b−Avg
Q

b)χQ∗
)̂
(η)
∣∣2 dη

≤ B2
∫

Q∗

∣∣b(x)−Avg
Q

b
∣∣2 dx

≤ 2B2
∫

Q∗

∣∣b(x)−Avg
Q∗

b
∣∣2 dx+2B2|Q∗|

∣∣Avg
Q∗

b−Avg
Q

b
∣∣2

≤ B2
∫

Q∗

∣∣b(x)−Avg
Q∗

b
∣∣2 dx+ cn 2B2∥∥b

∥∥2
BMO |Q|

≤ Cn B2‖b‖2
BMO |Q| ,

where the used the analogue of (3.1.4) for cubes and Corollary 3.1.8. To estimate
Σ2, we use the size estimate of the function Ψ . We obtain

∣∣(Ψ2− j ∗
(
b−Avg

Q
b
)
χ(Q∗)c

)
(x)
∣∣≤ ∫

(Q∗)c

A2− jδ
∣∣b(y)−AvgQ b

∣∣
(2− j + |x− y|)n+δ

dy . (3.3.18)

But note that if cQ is the center of Q, then

2− j + |x− y| ≥ |y− x|
≥ |y− cQ|− |cQ− x|

≥ 1
2
|cQ− y|+ 3

√
n

4
`(Q)−|cQ− x|


