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sup
Q

1
|Q|

∫
Q
|b(x)−CQ|dx = sup

Q

1
|Q|

∫
Q
|FQ(x)|dx

≤ sup
Q
|Q|−1|Q| 12

∥∥FQ∥∥
L2(Q)

≤ sup
Q
|Q|− 1

2
∥∥L
∥∥

L2
0(Q)→C

≤ cn
∥∥L
∥∥

H1→C < ∞ .

Using Proposition 3.1.2 (3), we deduce that b ∈ BMO and ‖b‖BMO ≤ 2cn‖L‖H1→C.
Finally, (3.2.11) implies that

L(g) =
∫

Rn
b(x)g(x)dx = Lb(g)

for all g ∈H1
0 (R

n), proving that the linear functional L coincides with Lb on a dense
subspace of H1. Consequently, L = Lb, and this concludes the proof of part (b). �

Exercises

3.2.1. Given b in BMO, let Lb be as in Definition 3.2.1. Prove that for b in BMO
we have ∥∥b

∥∥
BMO ≈ sup

‖ f‖H1≤1

∣∣Lb( f )
∣∣ ,

and for a given f in H1 we have∥∥ f
∥∥

H1 ≈ sup
‖b‖BMO≤1

∣∣Lb( f )
∣∣ .

[
Hint: Use ‖T‖X∗ = sup x∈X

‖x‖X≤1
|T (x)| for all T in the dual of a Banach space X .

]
3.2.2. Suppose that a locally integrable function u is supported in a cube Q in Rn

and satisfies ∫
Q

u(x)g(x)dx = 0

for all square integrable bounded functions g on Q with mean value zero. Show that
u is almost everywhere equal to a constant.

3.3 Nontangential Maximal Functions and Carleson Measures

Many properties of functions defined on Rn are related to corresponding properties
of associated functions defined on Rn+1

+ in a natural way. A typical example of
this situation is the relation between an Lp(Rn) function f and its Poisson integral
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f ∗Pt or more generally f ∗Φt , where {Φt}t>0 is an approximate identity. Here Φ

is a Schwartz function on Rn with integral 1. A maximal operator associated to the
approximate identity { f ∗Φt}t>0 is

f → sup
t>0
| f ∗Φt | ,

which we know is pointwise controlled by a multiple of the Hardy–Littlewood max-
imal function M( f ). Another example of a maximal operator associated to the pre-
vious approximate identity is the nontangential maximal function

f →M∗( f ;Φ)(x) = sup
t>0

sup
|y−x|<t

|( f ∗Φt)(y)|.

To study nontangential behavior we consider general functions F defined on Rn+1
+

that are not necessarily given as an average of functions defined on Rn. Throughout
this section we use capital letters to denote functions defined on Rn+1

+ . When we
write F(x, t) we mean that x ∈ Rn and t > 0.

3.3.1 Definition and Basic Properties of Carleson Measures

Definition 3.3.1. Let F be a measurable function on Rn+1
+ . For x in Rn let Γ (x) be

the cone with vertex x defined by

Γ (x) = {(y, t) ∈ Rn×R+ : |y− x|< t}.

A picture of this cone is shown in Figure 3.1. The nontangential maximal function
of F is the function

F∗(x) = sup
(y,t)∈Γ (x)

|F(y, t)|

defined on Rn. This function is obtained by taking the supremum of the values of F
inside the cone Γ (x).

We observe that if F∗(x) = 0 for almost all x ∈ Rn, then F is identically equal
to zero on Rn+1

+ . To establish this claim, suppose that |F(x0, t0)|> 0 for some point
(x0, t0) ∈ Rn×R+. Then for all z with |z− x0| < t0 we have (x0, t0) ∈ Γ (z), hence
F∗(z)≥ |F(x0, t0)|> 0. Thus F∗ > 0 on the ball B(x0, t0), which is a set of positive
measure, a contradiction.

Definition 3.3.2. Given a ball B = B(x0,r) in Rn we define the cylindrical tent over
B to be the “cylindrical set”

T (B) = {(x, t) ∈ Rn+1
+ : x ∈ B, 0 < t ≤ r} .
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Fig. 3.1 The cone Γ (x) trun-
cated at height t.

x

|y - x| < t

For a cube Q in Rn we define the tent over Q to be the cube

T (Q) = Q× (0, `(Q)] .

A tent over a ball and over a cube are shown in Figure 3.2. A positive Borel measure
µ on Rn+1

+ is called a Carleson measure if

∥∥µ
∥∥

C
= sup

Q

1
|Q|µ(T (Q))< ∞, (3.3.1)

where the supremum in (3.3.1) is taken over all cubes Q in Rn. The Carleson func-
tion of the measure µ is defined as

C (µ)(x) = sup
Q3x

1
|Q|µ(T (Q)), (3.3.2)

where the supremum in (3.3.2) is taken over all cubes in Rn containing the point x.
Observe that ‖C (µ)‖L∞ = ‖µ‖C .

We also define ∥∥µ
∥∥cylinder

C
= sup

B

1
|B|µ(T (B)) , (3.3.3)

where the supremum is taken over all balls B in Rn. One can easily verify that there
exist dimensional constants cn and Cn such that

cn
∥∥µ
∥∥

C
≤
∥∥µ
∥∥cylinder

C
≤Cn

∥∥µ
∥∥

C

for all Borel measures µ on Rn+1
+ , that is, a measure satisfies the Carleson condition

(3.3.1) with respect to cubes if and only if it satisfies the analogous condition (3.3.3)
with respect to balls. Likewise, the Carleson function C (µ) defined with respect to
tents over cubes is comparable to

C cylinder(µ)(x) = sup
B3x

1
|B|µ(T (B)),

defined with respect to cylindrical tents over balls B in Rn.
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Examples 3.3.3. The Lebesgue measure on Rn+1
+ is not a Carleson measure. Indeed,

it is not difficult to see that condition (3.3.1) cannot hold for large balls.
Let L be a line in R2. For A measurable subsets of R2

+ define µ(A) to be the linear
Lebesgue measure of the set L∩A. Then µ is a Carleson measure on R2

+. Indeed,
the linear measure of the part of a line inside the box [x0−r,x0+r]×(0,r] is at most
equal to the diagonal of the box, that is,

√
5r.

B(x
0
,r) Q

r

r

Fig. 3.2 The tents over the ball B(x0,r) and over a cube Q in R2.

Likewise, let P be an affine plane in Rn+1 and define a measure ν by setting
ν(A) to be the n-dimensional Lebesgue measure of the set A∩P for any A⊆ Rn+1

+ .
A similar idea shows that ν is a Carleson measure on Rn+1

+ .

We now turn to the study of some interesting boundedness properties of functions
on Rn+1

+ with respect to Carleson measures.
A useful tool in this study is the Whitney decomposition of an open set in Rn.

This is a decomposition of a general open set Ω in Rn as a union of disjoint cubes
whose lengths are proportional to their distance from the boundary of the open set.
For a given cube Q in Rn, we denote by `(Q) its length.

Proposition 3.3.4. (Whitney decomposition) Let Ω be an open nonempty proper
subset of Rn. Then there exists a family of closed cubes {Q j} j such that
(a)

⋃
j Q j = Ω and the Q j’s have disjoint interiors;

(b)
√

n`(Q j)≤ dist (Q j,Ω
c)≤ 4

√
n`(Q j);

(c) if the boundaries of two cubes Q j and Qk touch, then
1
4
≤ `(Q j)

`(Qk)
≤ 4;

(d) for a given Q j there exist at most 12n Qk’s that touch it.

The proof of Proposition 3.3.4 is given in Appendix J in [156].

Theorem 3.3.5. There exists a dimensional constant Cn such that for all α > 0, all
Borel measures µ ≥ 0 on Rn+1

+ , and all µ-measurable functions F on Rn+1
+ , the set

Ωα = {F∗ > α} is open (thus Lebesgue measurable) and we have

µ
(
{(x, t) ∈ Rn+1

+ : |F(x, t)|> α}
)
≤Cn

∫
{F∗>α}

C (µ)(x)dx. (3.3.4)


