3 BMO and Carleson Measures

$$\begin{split} \sup_{\mathcal{Q}} \frac{1}{|\mathcal{Q}|} \int_{\mathcal{Q}} |b(x) - C_{\mathcal{Q}}| \, dx &= \sup_{\mathcal{Q}} \frac{1}{|\mathcal{Q}|} \int_{\mathcal{Q}} |F^{\mathcal{Q}}(x)| \, dx \\ &\leq \sup_{\mathcal{Q}} |\mathcal{Q}|^{-1} |\mathcal{Q}|^{\frac{1}{2}} \|F^{\mathcal{Q}}\|_{L^{2}(\mathcal{Q})} \\ &\leq \sup_{\mathcal{Q}} |\mathcal{Q}|^{-\frac{1}{2}} \|L\|_{L^{2}_{0}(\mathcal{Q}) \to \mathbf{C}} \\ &\leq c_{n} \|L\|_{H^{1} \to \mathbf{C}} < \infty. \end{split}$$

Using Proposition 3.1.2 (3), we deduce that $b \in BMO$ and $||b||_{BMO} \le 2c_n ||L||_{H^1 \to \mathbb{C}}$. Finally, (3.2.11) implies that

$$L(g) = \int_{\mathbf{R}^n} b(x)g(x)\,dx = L_b(g)$$

for all $g \in H_0^1(\mathbb{R}^n)$, proving that the linear functional *L* coincides with L_b on a dense subspace of H^1 . Consequently, $L = L_b$, and this concludes the proof of part (b).

Exercises

3.2.1. Given b in BMO, let L_b be as in Definition 3.2.1. Prove that for b in BMO we have $\|b\|_{BMO} \approx \sup |L_b(f)|,$

$$\|b\|_{BMO} \sim \sup_{\|f\|_{H^1} \le 1} |L_b(f)|$$

and for a given f in H^1 we have

$$\left\|f\right\|_{H^1} \approx \sup_{\|b\|_{BMO} \le 1} \left|L_b(f)\right|.$$

[*Hint:* Use $||T||_{X^*} = \sup_{\substack{x \in X \\ ||x||_X \le 1}} |T(x)|$ for all *T* in the dual of a Banach space *X*.]

3.2.2. Suppose that a locally integrable function u is supported in a cube Q in \mathbb{R}^n and satisfies

$$\int_Q u(x)g(x)\,dx = 0$$

for all square integrable bounded functions g on Q with mean value zero. Show that u is almost everywhere equal to a constant.

3.3 Nontangential Maximal Functions and Carleson Measures

Many properties of functions defined on \mathbf{R}^n are related to corresponding properties of associated functions defined on \mathbf{R}^{n+1}_+ in a natural way. A typical example of this situation is the relation between an $L^p(\mathbf{R}^n)$ function f and its Poisson integral $f * P_t$ or more generally $f * \Phi_t$, where $\{\Phi_t\}_{t>0}$ is an approximate identity. Here Φ is a Schwartz function on \mathbf{R}^n with integral 1. A maximal operator associated to the approximate identity $\{f * \Phi_t\}_{t>0}$ is

$$f \to \sup_{t>0} |f * \Phi_t|,$$

which we know is pointwise controlled by a multiple of the Hardy–Littlewood maximal function M(f). Another example of a maximal operator associated to the previous approximate identity is the nontangential maximal function

$$f \to M^*(f; \Phi)(x) = \sup_{t>0} \sup_{|y-x| < t} |(f * \Phi_t)(y)|.$$

To study nontangential behavior we consider general functions F defined on \mathbb{R}^{n+1}_+ that are not necessarily given as an average of functions defined on \mathbb{R}^n . Throughout this section we use capital letters to denote functions defined on \mathbb{R}^{n+1}_+ . When we write F(x,t) we mean that $x \in \mathbb{R}^n$ and t > 0.

3.3.1 Definition and Basic Properties of Carleson Measures

Definition 3.3.1. Let *F* be a measurable function on \mathbf{R}^{n+1}_+ . For *x* in \mathbf{R}^n let $\Gamma(x)$ be the cone with vertex *x* defined by

$$\Gamma(x) = \{(y,t) \in \mathbf{R}^n \times \mathbf{R}^+ : |y-x| < t\}.$$

A picture of this cone is shown in Figure 3.1. The *nontangential maximal function* of F is the function

$$F^*(x) = \sup_{(y,t)\in\Gamma(x)} |F(y,t)|$$

defined on \mathbb{R}^n . This function is obtained by taking the supremum of the values of *F* inside the cone $\Gamma(x)$.

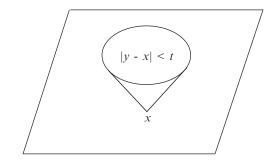
We observe that if $F^*(x) = 0$ for almost all $x \in \mathbf{R}^n$, then *F* is identically equal to zero on \mathbf{R}^{n+1}_+ . To establish this claim, suppose that $|F(x_0,t_0)| > 0$ for some point $(x_0,t_0) \in \mathbf{R}^n \times \mathbf{R}^+$. Then for all *z* with $|z - x_0| < t_0$ we have $(x_0,t_0) \in \Gamma(z)$, hence $F^*(z) \ge |F(x_0,t_0)| > 0$. Thus $F^* > 0$ on the ball $B(x_0,t_0)$, which is a set of positive measure, a contradiction.

Definition 3.3.2. Given a ball $B = B(x_0, r)$ in \mathbb{R}^n we define the *cylindrical tent* over *B* to be the "cylindrical set"

$$T(B) = \{ (x,t) \in \mathbf{R}^{n+1}_+ : x \in B, \quad 0 < t \le r \}.$$

3 BMO and Carleson Measures

Fig. 3.1 The cone $\Gamma(x)$ truncated at height *t*.



For a cube Q in \mathbf{R}^n we define the *tent* over Q to be the cube

$$T(Q) = Q \times (0, \ell(Q)].$$

A tent over a ball and over a cube are shown in Figure 3.2. A positive Borel measure μ on \mathbf{R}^{n+1}_+ is called a *Carleson measure* if

$$\|\mu\|_{\mathscr{C}} = \sup_{\mathcal{Q}} \frac{1}{|\mathcal{Q}|} \mu(T(\mathcal{Q})) < \infty, \tag{3.3.1}$$

where the supremum in (3.3.1) is taken over all cubes Q in \mathbb{R}^n . The *Carleson function* of the measure μ is defined as

$$\mathscr{C}(\mu)(x) = \sup_{Q \ni x} \frac{1}{|Q|} \mu(T(Q)), \qquad (3.3.2)$$

where the supremum in (3.3.2) is taken over all cubes in \mathbb{R}^n containing the point *x*. Observe that $\|\mathscr{C}(\mu)\|_{L^{\infty}} = \|\mu\|_{\mathscr{C}}$.

We also define

$$\|\mu\|_{\mathscr{C}}^{\text{cylinder}} = \sup_{B} \frac{1}{|B|} \mu(T(B)), \qquad (3.3.3)$$

where the supremum is taken over all balls B in \mathbb{R}^n . One can easily verify that there exist dimensional constants c_n and C_n such that

$$c_n \|\mu\|_{\mathscr{C}} \leq \|\mu\|_{\mathscr{C}}^{\operatorname{cylinder}} \leq C_n \|\mu\|_{\mathscr{C}}$$

for all Borel measures μ on \mathbb{R}^{n+1}_+ , that is, a measure satisfies the Carleson condition (3.3.1) with respect to cubes if and only if it satisfies the analogous condition (3.3.3) with respect to balls. Likewise, the Carleson function $\mathscr{C}(\mu)$ defined with respect to tents over cubes is comparable to

$$\mathscr{C}^{\text{cylinder}}(\mu)(x) = \sup_{B \ni x} \frac{1}{|B|} \mu(T(B)).$$

defined with respect to cylindrical tents over balls B in \mathbb{R}^n .

174

Examples 3.3.3. The Lebesgue measure on \mathbb{R}^{n+1}_+ is not a Carleson measure. Indeed, it is not difficult to see that condition (3.3.1) cannot hold for large balls.

Let *L* be a line in \mathbb{R}^2 . For *A* measurable subsets of \mathbb{R}^2_+ define $\mu(A)$ to be the linear Lebesgue measure of the set $L \cap A$. Then μ is a Carleson measure on \mathbb{R}^2_+ . Indeed, the linear measure of the part of a line inside the box $[x_0 - r, x_0 + r] \times (0, r]$ is at most equal to the diagonal of the box, that is, $\sqrt{5r}$.

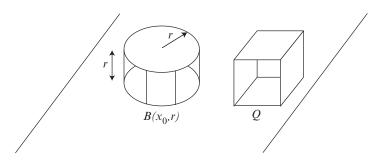


Fig. 3.2 The tents over the ball $B(x_0, r)$ and over a cube Q in \mathbb{R}^2 .

Likewise, let *P* be an affine plane in \mathbb{R}^{n+1} and define a measure *v* by setting v(A) to be the *n*-dimensional Lebesgue measure of the set $A \cap P$ for any $A \subseteq \mathbb{R}^{n+1}_+$. A similar idea shows that *v* is a Carleson measure on \mathbb{R}^{n+1}_+ .

We now turn to the study of some interesting boundedness properties of functions on \mathbf{R}^{n+1}_+ with respect to Carleson measures.

A useful tool in this study is the *Whitney decomposition* of an open set in \mathbb{R}^n . This is a decomposition of a general open set Ω in \mathbb{R}^n as a union of disjoint cubes whose lengths are proportional to their distance from the boundary of the open set. For a given cube Q in \mathbb{R}^n , we denote by $\ell(Q)$ its length.

Proposition 3.3.4. (Whitney decomposition) Let Ω be an open nonempty proper subset of \mathbb{R}^n . Then there exists a family of closed cubes $\{Q_j\}_j$ such that (a) $\bigcup_j Q_j = \Omega$ and the Q_j 's have disjoint interiors; (b) $\sqrt{n}\ell(Q_j) \leq dist(Q_j, \Omega^c) \leq 4\sqrt{n}\ell(Q_j)$; (c) if the boundaries of two cubes Q_j and Q_k touch, then

$$rac{1}{4} \leq rac{\ell(Q_j)}{\ell(Q_k)} \leq 4;$$

(d) for a given Q_i there exist at most $12^n Q_k$'s that touch it.

The proof of Proposition 3.3.4 is given in Appendix J in [156].

Theorem 3.3.5. There exists a dimensional constant C_n such that for all $\alpha > 0$, all Borel measures $\mu \ge 0$ on \mathbb{R}^{n+1}_+ , and all μ -measurable functions F on \mathbb{R}^{n+1}_+ , the set $\Omega_{\alpha} = \{F^* > \alpha\}$ is open (thus Lebesgue measurable) and we have

$$\mu(\{(x,t) \in \mathbf{R}^{n+1}_+ : |F(x,t)| > \alpha\}) \le C_n \int_{\{F^* > \alpha\}} \mathscr{C}(\mu)(x) \, dx. \tag{3.3.4}$$