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Using Proposition 3.1.2 (3), we deduce that b € BMO and ||b||syo < 2¢q||L|| g1 -
Finally, (3.2.11) implies that

L(e) = [ blx)g(x)dx = Ly(g)

for all g € H}(R"), proving that the linear functional L coincides with L, on a dense
subspace of H'. Consequently, L = L;, and this concludes the proof of part (b). [J

Exercises
3.2.1. Given b in BMO, let L, be as in Definition 3.2.1. Prove that for b in BMO

we have [/ S Hfﬁupﬂ‘Lb(f)
Fllg <

)

and for a given f in H' we have

£l = sup [Ly(f)]-

ll6llBMo<1

[Hint: Use ||T||x+ =sup rex |T(x)|forall T in the dual of a Banach space X.]

[lxllx <1

3.2.2. Suppose that a locally integrable function u is supported in a cube Q in R"
and satisfies

'/Qu(x)g(x) dx=0

for all square-integrable bounded functions g on Q with mean value zero. Show that
u is almost everywhere equal to a constant.

3.3 Nontangential Maximal Functions and Carleson Measures

Many properties of functions defined on R" are related to corresponding properties
of associated functions defined on R’fl in a natural way. A typical example of
this situation is the relation between an L”(R") function f and its Poisson integral
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f* P or more generally f * &, where {®, },~¢ is an approximate identity. Here &
is a Schwartz function on R” with integral 1. A maximal operator associated to the
approximate identity {f * &, },~¢ is

f—supl|fd,

>0

which we know is pointwise controlled by a multiple of the Hardy-Littlewood max-
imal function M(f). Another example of a maximal operator associated to the pre-
vious approximate identity is the nontangential maximal function

=M (f;@)(x) =sup sup [(f*P)(y)l

>0 |y—x|<t

To study nontangential behavior we consider general functions F defined on R’fl
that are not necessarily given as an average of functions defined on R". Throughout
this section we use capital letters to denote functions defined on Rffrl. When we
write F(x,7) we mean that x € R" and ¢ > 0.

3.3.1 Definition and Basic Properties of Carleson Measures

Definition 3.3.1. Let F be a measurable function on R, For x in R” let I"(x) be
the cone with vertex x defined by

Cx)={(t) eR"xR": |[y—x| <t}.

A picture of this cone is shown in Figure 3.1. The nontangential maximal function
of F is the function
F'(x)= sup [|F(y,1)|
(yt)€l (x)
defined on R”. This function is obtained by taking the supremum of the values of F
inside the cone I'(x).

We observe that if F*(x) = 0 for almost all x € R”, then F is identically equal
to zero on R%"!. To establish this claim, suppose that |F(xq, )| > 0 for some point
(x0,70) € R" x R™. Then for all z with |z —xo| < fp we have (xo,79) € I'(z), hence
F*(2) > |F(x0,%0)| > 0. Thus F* > 0 on the ball B(xy, ), which is a set of positive
measure, a contradiction.

Definition 3.3.2. Given a ball B = B(xy,r) in R” we define the cylindrical tent over
B to be the “cylindrical set”

T(B)={(x,t) eR™™ : xeB, 0<t<r}.
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Fig. 3.1 The cone I"(x) trun-
cated at height 7.

X

X

For a cube Q in R” we define the tent over Q to be the cube

T(Q)=0x(0,(Q)].

A tent over a ball and over a cube are shown in Figure 3.2. A positive Borel measure
U on Rf’ﬁl is called a Carleson measure if

1
= sup —U(T(Q)) <o, (3.3.1)
Y

1]l
where the supremum in (3.3.1) is taken over all cubes Q in R”. The Carleson func-
tion of the measure U is defined as

(1) (x )—Sup| u(1(Q)), (3.3.2)

0|

where the supremum in (3.3.2) is taken over all cubes in R” containing the point x.
Observe that ||€'(1)]|~ = || ||%-

We also define

|| Hcylmder

wp 5 H(T(B)). (333)

where the supremum is taken over all balls B in R". One can easily verify that there
exist dimensional constants c¢,, and C,, such that

cylmder

Cn

for all Borel measures (L on Rf‘ﬁl, that is, a measure satisfies the Carleson condition
(3.3.1) with respect to cubes if and only if it satisfies the analogous condition (3.3.3)
with respect to balls. Likewise, the Carleson function € () defined with respect to
tents over cubes is comparable to

%cylinder(“)(x) = sup — 1
B>x |B‘

u(T(B)),

defined with respect to cylindrical tents over balls B in R".
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Examples 3.3.3. The Lebesgue measure on RT‘ is not a Carleson measure. Indeed,
it is not difficult to see that condition (3.3.1) cannot hold for large balls.

Let L be aline in R2. For A measurable subsets of R2 define yt(A) to be the linear
Lebesgue measure of the set LNA. Then u is a Carleson measure on Ri. Indeed,
the linear measure of the part of a line inside the box [xg — r,x0 + 1] X (0, 7] is at most
equal to the diagonal of the box, that is, V5r.

Fig. 3.2 The tents over the ball B(xo,r) and over a cube Q in R?.

Likewise, let P be an affine plane in R"*! and define a measure v by setting
V(A) to be the n-dimensional Lebesgue measure of the set A N P for any A C R"™!.
A similar idea shows that v is a Carleson measure on Rf‘fl.

We now turn to the study of some interesting boundedness properties of functions
on Rf‘ﬁl with respect to Carleson measures.

A useful tool in this study is the Whitney decomposition of an open set in R".
This is a decomposition of a general open set £2 in R" as a union of disjoint cubes
whose lengths are proportional to their distance from the boundary of the open set.
For a given cube Q in R", we denote by £(Q) its length.

Proposition 3.3.4. (Whitney decomposition) Let 2 be an open nonempty proper
subset of R". Then there exists a family of closed cubes {Q;} j such that
(a) Uj Q; = Q and the Q;’s have disjoint interiors;
(b) Vnl(Q)) < dist(Q;,2°) < 4/nl(Q));
(c) if the boundaries of two cubes Q; and Qy touch, then
L UQ) .
47 Q)

(d) for a given Q; there exist at most 12" Qy’s that touch it.

The proof of Proposition 3.3.4 is given in Appendix J in [156].

Theorem 3.3.5. There exists a dimensional constant C,, such that for all o > 0, all
Borel measures 1 > 0 on R'J’r“, and all p-measurable functions F on R'J’r“, the set
Qy ={F* > a} is open (thus Lebesgue measurable) and we have

p({(x) e R F(xn)| > a}) <C, /{ oy O (33.4)



