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To prove (3.2.4) we use the square function characterization of H1. We fix a
Schwartz function Ψ on Rn whose Fourier transform is supported in the annulus
1
2 ≤ |ξ | ≤ 2 and that satisfies (1.3.6) for all ξ 6= 0 and we let ∆ j(g) =Ψ2− j ∗ g. To

estimate the L1 norm of
(
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)1/2 over Rn, consider the part of the integral
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nQ)c. First we use Hölder’s inequality and an
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Now for x /∈ 3
√

nQ we use the mean value property of g to obtain

|∆ j(g)(x)| ≤
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L22n j+ j|Q| 1n+ 1
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(1+2 j|x− cQ|)n+2 , (3.2.5)

where cQ is the center of Q. Estimate (3.2.5) is obtained in a way similar to that we
obtained the corresponding estimate for one atom; see Theorem 2.3.11 for details.
Now (3.2.5) implies that∫
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which proves (3.2.4).
Since L2

0(Q) is a subspace of H1, it follows from (3.2.4) that the linear functional
L : H1→ C is also a bounded linear functional on L2

0(Q) with norm∥∥L
∥∥

L2
0(Q)→C ≤ cn|Q|1/2∥∥L

∥∥
H1→C . (3.2.6)

By the Riesz representation theorem for the Hilbert space L2
0(Q), there is an element

FQ in (L2
0(Q))∗ = L2(Q)/{constants}, equipped with norm ‖h‖= inf

c∈C
‖h− c‖L2(Q),

such that
L(g) =

∫
Q

FQ(x)g(x)dx, (3.2.7)

for all g ∈ L2
0(Q), and this FQ satisfies∥∥FQ∥∥

L2(Q)
≤
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0(Q)→C . (3.2.8)

Thus for any cube Q in Rn, there is square integrable function FQ supported in Q
such that (3.2.7) is satisfied. We observe that if a cube Q is contained in another
cube Q′, then FQ differs from FQ′ by a constant on Q. Indeed, for all g ∈ L2

0(Q) we
have ∫

Q
FQ′(x)g(x)dx = L(g) =

∫
Q

FQ(x)g(x)dx


