integrable over any cube. Thus given a *BMO* function *b* on \mathbb{R}^n and an L^2 function *g* with integral zero supported in a cube *Q* in \mathbb{R}^n , the integral $\int_{\mathbb{R}^n} g(x) b(x) dx$ converges absolutely by the Cauchy–Schwarz inequality.

Definition 3.2.1. Denote by $H_0^1(\mathbb{R}^n)$ the space of all finite linear combinations of L^2 atoms for $H^1(\mathbb{R}^n)$ and fix $b \in BMO(\mathbb{R}^n)$. Given $g \in H_0^1$ we define a linear functional

$$L_b(g) = \int_{\mathbf{R}^n} g(x)b(x)\,dx \tag{3.2.1}$$

as an absolutely convergent integral. Observe that the integral in (3.2.1) and thus the definition of L_b on H_0^1 remain the same if *b* is replaced by b + c, where *c* is an additive constant. Additionally, we observe that (3.2.1) is also an absolutely convergent integral when *g* is a general element of $H^1(\mathbf{R}^n)$ and the *BMO* function *b* is bounded.

To extend the definition of L_b on the entire H^1 for all functions b in BMO we need to know that

$$\|L_b\|_{H^1 \to \mathbb{C}} \le C_n \|b\|_{BMO}, \quad \text{whenever } b \text{ is bounded}, \quad (3.2.2)$$

a fact that will be proved momentarily. Assuming (3.2.2), take $b \in BMO$ and let $b_M(x) = b\chi_{|b| \le M}$ for M = 1, 2, 3, ... Since $||b_M||_{BMO} \le \frac{9}{4} ||b||_{BMO}$ (Exercise 3.1.4), the sequence of linear functionals $\{L_{b_M}\}_M$ lies in a multiple of the unit ball of $(H^1)^*$ and by the Banach–Alaoglou theorem there is a subsequence $M_j \to \infty$ as $j \to \infty$ such that $L_{b_{M_j}}$ converges weakly to a bounded linear functional \tilde{L}_b on H^1 . This means that for all f in $H^1(\mathbb{R}^n)$ we have

$$L_{b_{M_j}}(f) \to \widetilde{L}_b(f)$$

as $j \to \infty$.

If a_Q is a fixed L^2 atom for H^1 , the difference $|L_{b_{M_j}}(a_Q) - L_b(a_Q)|$ is bounded by $||a_Q||_{L^2}$ $(||b_{M_j} - \operatorname{Avg}_Q b_{M_j} - b + \operatorname{Avg}_Q b||_{L^2(Q)})$ which is in turn bounded by $||a_Q||_{L^2}(||b_{M_j} - b||_{L^2(Q)} + |Q|^{1/2}|\operatorname{Avg}_Q(b_{M_j} - b)|)$, and this expression tends to zero as $j \to \infty$ by the Lebesgue dominated convergence theorem. The same conclusion holds for any finite linear combination of a_Q 's. Thus for all $g \in H_0^1$ we have

$$L_{b_{M_i}}(g) \to L_b(g)$$

and consequently, $L_b(g) = \widetilde{L}_b(g)$ for all $g \in H_0^1$. Since H_0^1 is dense in H^1 and L_b and \widetilde{L}_b coincide on H_0^1 , it follows that \widetilde{L}_b is the *unique* bounded extension of L_b on H^1 . We have therefore defined L_b on the entire H^1 as a weak limit of bounded linear functionals.

Having set the definition of L_b , we proceed by showing the validity of (3.2.2). Let *b* be a bounded *BMO* function. Given *f* in H^1 , find a sequence a_k of L^2 atoms for H^1 supported in cubes Q_k such that

$$f = \sum_{k=1}^{\infty} \lambda_k a_k \tag{3.2.3}$$