3.2 Duality between H^1 and BMO

Show that *f* satisfies the estimate

$$\left|\left\{x \in Q: \left|f(x) - \operatorname{Avg}_{Q}f\right| > \alpha\right\}\right| \le |Q| e^{-c\alpha^{1/r}}$$

with $c = (2b)^{-1/m} \log 2$. [*Hint:* Try $p = (\alpha/2b)^{1/m}$.]

3.1.8. Prove that $|\log |x||^p$ is not in $BMO(\mathbf{R})$ when 1 . [*Hint:* $Show that if <math>|\log |x||^p$ were in *BMO*, then estimate (3.1.9) would be violated for large α .]

3.1.9. Given $1 and f locally integrable on <math>\mathbb{R}^n$ prove that

$$\sup_{Q} \left(\inf_{c_{Q}} \frac{1}{|Q|} \int_{Q} |f(x) - c_{Q}|^{p} dx \right)^{\frac{1}{p}} \approx \left\| f \right\|_{BMO}.$$

Hint: Use Proposition 3.1.2 (4) and Corollary 3.1.9.

3.1.10. Let $f \in BMO(\mathbf{R})$ have mean value equal to zero on a fixed closed interval *I*. Find a *BMO* function *g* on **R** such that

(1)
$$g = f$$
 on *I*;

- (2) g = 0 on **R** \ $\frac{5}{3}I$;
- (3) $||g||_{BMO} \le 12 ||f||_{BMO}$.

[*Hint:* Let I_0 be the closed middle third of I. Write the interior of I as $\bigcup_{k \in \mathbb{Z}} I_k$, where for |k| > 0, I_k are closed subintervals of I such that the right endpoint of I_k coincides with the left endpoint of I_{k+1} and dist $(I_k, \partial I) = |I_k| = \frac{1}{3}2^{-|k|}$. For $|k| \ge 1$, let J_k be the reflection of I_k with respect to the closest endpoint of I and set $g = \operatorname{Avg}_{I_k} f$ on J_k for |k| > 1, g = f on I, and zero otherwise. To prove property (3), given an arbitrary interval Q on the real line, consider the cases where $|Q| \ge \frac{1}{3}|I|$ and $|Q| < \frac{1}{3}|I|$.]

3.2 Duality between H^1 and BMO

The next result we discuss is a remarkable duality relationship between the Hardy space H^1 and *BMO*. Precisely, we show that *BMO* is the dual space of H^1 . This means that every continuous linear functional on the Hardy space H^1 can be realized as integration against a fixed *BMO* function, where *integration* in this context is an abstract operation, not necessarily given by an absolutely convergent integral. Restricting our attention, however, to a dense subspace of H^1 such as the space of all finite sums of atoms, the use of the word *integration* is well justified. Indeed, first we note that an important consequence of (3.1.15) is that any *BMO* function *b* lies in $L^p(Q)$ for any *Q* in \mathbb{R}^n and any *p* satisfying 1 ; in particular it is square