Let $G_{|x|}(s)$ be the function inside the square brackets in (2.4.56). Then $G_{|x|}(s) \rightarrow 0$ as $|x| \rightarrow \infty$ for all *s*. The hypothesis (2.4.42) implies that $G_{|x|}$ is bounded by a constant and it is therefore integrable over the interval $\left[\frac{1}{2}\varepsilon,\infty\right)$ with respect to the measure $s^{-n-1}ds$. By the Lebesgue dominated convergence theorem we deduce that the expression in (2.4.56) converges to zero as $|x| \rightarrow \infty$ and thus it can be made smaller that $\eta/2$ for $|x| \ge R_2$, for some constant R_2 . Then with $R_0'' = \sqrt{2}R_2$ we have that if $|(x,t)| \ge R_0''$ then (2.4.56) is at most $\eta/2$. Since $U - V \le U$, we deduce the validity of (2.4.54) for $|(x,t)| > R_0 = \max(R_0', R_0'')$.

Let r = p/q > 1. Assumption (2.4.42) implies that the functions $x \mapsto |F(x,t)|^q$ are in L^r uniformly in t. Since any closed ball of L^r is weak^{*} compact, there is a sequence $\varepsilon_k \to 0$ such that $|F(x, \varepsilon_k)|^q \to h$ weakly in L^r as $k \to \infty$ to some function $h \in L^r$. Since $P_t \in L^{r'}$, this implies that

$$(|F(\cdot,\varepsilon_k)|^q * P_t)(x) \to (h * P_t)(x)$$

for all $x \in \mathbf{R}^n$. Using (2.4.53) we obtain

$$|F(x,t)|^q = \limsup_{k \to \infty} |F(x,t+\varepsilon_k)|^q \le \limsup_{k \to \infty} \left(|F(\cdot,\varepsilon_k)|^q * P_t \right)(x) = (h*P_t)(x),$$

which gives for all $x \in \mathbf{R}^n$,

$$|F|^*(x) \le \left[\sup_{t>0} \sup_{|y-x| < t} (|h| * P_t)(y)\right]^{1/q} \le C'_n M(h)(x)^{1/q}.$$
(2.4.57)

Let $g \in L^{r'}(\mathbf{R}^n)$ with $L^{r'}$ norm at most one. The weak convergence yields

$$\int_{\mathbf{R}^n} |F(x,\varepsilon_k)|^q g(x) \, dx \to \int_{\mathbf{R}^n} h(x) \, g(x) \, dx$$

as $k \rightarrow \infty$, and consequently we have

$$\left|\int_{\mathbf{R}^n} h(x) g(x) dx\right| \leq \sup_k \int_{\mathbf{R}^n} |F(x, \varepsilon_k)|^q |g(x)| dx \leq \left\|g\right\|_{L^{r'}} \sup_{t>0} \left(\int_{\mathbf{R}^n} |F(x, t)|^p dx\right)^{\frac{1}{r}}.$$

Since g is arbitrary with L' norm at most one, this implies that

$$\|h\|_{L^r} \le \sup_{t>0} \left(\int_{\mathbf{R}^n} |F(x,t)|^p \, dx\right)^{\frac{1}{r}}.$$
 (2.4.58)

Putting things together, we have

$$\begin{split} \big\| |F|^* \big\|_{L^p} &\leq C'_n \big\| M(h)^{1/q} \big\|_{L^p} \\ &= C'_n \big\| M(h) \big\|_{L^r}^{1/q} \\ &\leq C_{n,p,q} \big\| h \big\|_{L^r}^{1/q} \end{split}$$