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Given ! > 0, we find a half-ball

BR0 = {(x, t) → Rn+1
+ : |x|2 + t2 < R2

0}

such that for (x, t) → Rn+1
+ \BR0 we have

U(x, t)↑V (x, t)↓ ! . (2.4.54)

Suppose that this is possible. Since U(x,0) =V (x,0), then (2.4.54) actually holds on
the entire boundary of BR0 . The function V is harmonic and U is subharmonic; thus
U ↑V is subharmonic. The maximum principle for subharmonic functions implies
that (2.4.54) holds in the interior of BR0 , and since it also holds on the exterior, it
must be valid for all (x, t) with x → Rn and t ↔ 0. Since ! was arbitrary, letting
! ↗ 0+ implies (2.4.53).

We now prove that R0 exists such that (2.4.54) is possible for (x, t) → Rn+1
+ \BR0 .

Let B((x, t), t/2) be the (n+1)-dimensional ball of radius t/2 centered at (x, t). The
subharmonicity of |F |q is reflected in the inequality

|F(x, t)|q ↓ 1
|B((x, t), t/2)|

∫

B((x,t), t/2)
|F(y,s)|q dyds ,

which by Hölder’s inequality and the fact p > q gives

|F(x, t)|q ↓
(

1
|B((x, t), t/2)|

∫

B((x,t),t/2)
|F(y,s)|p dyds

) q
p
.

From this we deduce that

|F(x, t + ∀)|q ↓
[

2n+1/vn+1

(t + ∀)n+1

∫ 3
2 (t+∀)

1
2 (t+∀)

∫

|y|↔|x|↑ 1
2 (t+∀)

|F(y,s)|p dyds
] q

p
. (2.4.55)

If t + ∀ ↔ |x|, using (2.4.42), we see that the expression on the right in (2.4.55) is
bounded by c↘Aq(t + ∀)↑nq/p, and thus it can be made smaller than !/2 by taking
t ↔ R1 = max

(
∀,(!/2c↘Aq)↑p/qn). Since R1 ↔ ∀ , we must have 2t ↔ t + ∀ ↔ |x|,

which implies that t ↔ |x|/2, and thus with R↘
0 =

≃
5R1, if |(x, t)|> R↘

0 then t ↔ R1.
Hence, the expression in (2.4.55) can be made smaller than !/2 for |(x, t)|> R↘

0.
If t + ∀ < |x| we estimate the expression on the right in (2.4.55) by

(
2n+1

vn+1

1
(t + ∀)n+1

∫ 3
2 (t+∀)

1
2 (t+∀)

[∫

|y|↔ 1
2 |x|

|F(y,s)|p dy
]

ds
) q

p
,

and we notice that the preceding expression is bounded by

(
3n+1

vn+1

∫ !

1
2 ∀

[∫

|y|↔ 1
2 |x|

|F(y,s)|p dy
]

ds
sn+1

) q
p
. (2.4.56)


