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Proof. Let Ψ be a Schwartz function whose Fourier transform is supported in the
annulus 1− 1

7 ≤ |ξ | ≤ 2 and that satisfies

∑
j∈Z

Ψ̂(2− j
ξ ) = 1 , ξ 6= 0 .

Pick a Schwartz function ζ whose Fourier transform ζ̂ is supported in the annulus
1
4 < |ξ | < 8 and that is equal to one on the support of Ψ̂ . Let W be the tempered
distribution that coincides with K on Rn \{0} so that T ( f ) = f ∗W . Then we have
ζ2− j ∗Ψ2− j =Ψ2− j for all j and hence∥∥∆ j(T ( f ))

∥∥
Lp =

∥∥ζ2− j ∗Ψ2− j ∗W ∗ f
∥∥

Lp

≤
∥∥ζ2− j ∗W

∥∥
L1

∥∥∆ j( f )
∥∥

Lp ,
(2.4.11)

since 1 ≤ p ≤ ∞. It is not hard to check that the function ζ2− j is in H1 with norm
independent of j. Therefore, ζ2− j is in H1. Using Theorem 2.4.1, we conclude that∥∥T (ζ2− j)

∥∥
L1 =

∥∥ζ2− j ∗W
∥∥

L1 ≤C
∥∥ζ2− j

∥∥
H1 =C′ .

Inserting this in (2.4.11), multiplying by 2 jα , and taking `q quasi-norms, we obtain
the required conclusion. �

2.4.3 Singular Integrals on H p(Rn)

It is possible to extend Theorem 2.4.1 to H p(Rn) for p < 1, provided the kernel K
has additional smoothness.

For the purposes of this subsection, we fix a C ∞ function K(x) on Rn \{0}. We
suppose that there is a positive integer N (to be specified later) such that

|∂ β K(x)| ≤ A |x|−n−|β | for all |β | ≤ N (2.4.12)

and that

sup
0<R1<R2<∞

∣∣∣∣ ∫
R1<|x|<R2

K(x)dx
∣∣∣∣≤ A , (2.4.13)

for some A < ∞.
We fix a nonnegative smooth function η on Rn that vanishes in the unit ball of Rn

and is equal to 1 outside the ball B(0,2) and for 0 < ε < 1/2 we define the smoothly
truncated family of kernels

K(ε)(x) = K(x)η(x/ε)
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and the doubly smoothly truncated family of kernels

K(ε)(x) = K(x)η(x/ε)−K(x)η(εx) .

Condition (2.4.12) with β = 0 and (2.4.13) imply that∣∣∣∣∫|x|≤1
K(x)η(x/ε)dx

∣∣∣∣≤ (1+ωn−1 log2)A

for all ε < 1/2; hence there exists a sequence ε j < 1/2 with ε j ↓ 0 as j→ ∞ such
that the following limit exists:

lim
j→∞

∫
|x|≤1

K(x)η(x/ε j)dx = L0.

We now define W in S ′(Rn) by setting

〈W,ϕ〉 = lim
j→∞

∫
Rn

K(ε j)(x)ϕ(x)dx (2.4.14)

= L0ϕ(0)+
∫
|x|≤1

K(x)(ϕ(x)−ϕ(0))dx+
∫
|x|≥1

K(x)ϕ(x)dx

for ϕ in S . It is quite easy to verify that the preceding expression is bounded by
a constant multiple of a finite sum of Schwartz seminorms of ϕ . Note that this
distribution4 depends on the number L0 and hence on the bump η .

We define the associated doubly smoothly truncated singular integral by setting

T(ε)(ϕ)(x) =
∫

Rn
K(ε)(y)ϕ(x− y)dy (2.4.15)

for Schwartz functions ϕ on Rn.
We also define an operator T given by convolution with W by setting

T (ϕ) = lim
j→∞

T(ε j)(ϕ) = ϕ ∗W (2.4.16)

for ϕ ∈S (Rn). Observe that W coincides with K on Rn\{0}, since if ϕ is supported
in |x| ≥ t0 > 0, (2.4.14) implies that the action of W on ϕ ∈S coincides with that
of K(ε j) on ϕ when ε j < t0/2. Condition (2.4.12) with |β |= 1 implies

sup
y6=0

∫
|x|≥2|y|

|K(x− y)−K(x)|dx≤ cA ; (2.4.17)

hence Theorem 5.4.1 in [156] yields the L2 boundedness of T . Note that (2.4.17)
also holds for K(ε) in place of K uniformly in ε; thus again by Theorem 5.4.1 in
[156] the operators T(ε) are uniformly bounded on L2(Rn).

4 Alternatively, we could have defined W as an element of S ′(Rn)/P(Rn) acting on functions
ϕ ∈S0; in this case W would have been independent of L0 and η .
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We summarize these and other observations about K(ε), T(ε), and T .

(i) The kernels K(ε) satisfy the same estimates as K uniformly in ε with constant
A′ in place of A, where A′ is comparable to A.

(ii) T(ε) are uniformly bounded on L2.
(iii) T(ε j)(g) tends to T (g) in L2 for any g ∈ L2(Rn).

(iv) T is L2 bounded with norm ‖Ŵ‖L∞ ≤C A.
(v) For any f ∈ H p, T ( f ) is a well-defined element of S ′.

We have already explained assertions (i) and (ii) and (iv).
We explain (iii). Theorem 5.3.4 in [156] gives that for all g ∈ L2 we have

sup
ε>0
|T(ε)(g)| ≤M(T (g))+Cn AM(g) ;

hence the maximal operator T (∗∗)(g) = supε>0 |T(ε)(g)| is L2 bounded. Moreover,
as an easy consequence of (2.4.14), for each ϕ ∈ S we have T(ε j)(ϕ) → T (ϕ)
pointwise everywhere. In view of Theorem 2.1.14 in [156], for every g∈ L2(Rn) we
have T(ε j)(g)−T (g)→ 0 a.e. as j→ ∞. Since

|T(ε j)(g)−T (g)| ≤ 2T (∗∗)(g) ∈ L2 ,

the Lebesgue dominated convergence theorem yields that T(ε j)(g)−T (g)→ 0 in L2.
To verify the validity of (v) we write W = W0 + K∞, where W0 = ΦW and

K∞ = (1−Φ)K, where Φ is a smooth function equal to one on the ball B(0,1)
and vanishing outside the ball B(0,2). Then for f in H p(Rn), 0 < p≤ 1, we define
a tempered distribution T ( f ) =W ∗ f by setting〈

T ( f ),φ
〉
=
〈

f ,φ ∗W̃0
〉
+
〈
φ̃ ∗ f , K̃∞

〉
(2.4.18)

for φ in S (Rn). (Here ϕ̃(x) = ϕ(−x) for functions and analogously for distribu-
tions.) The function φ ∗W̃0 is in S , so the action of f on it is well defined. Also
φ̃ ∗ f is in L1 (see Proposition 2.1.9), while K̃∞ is in L∞; hence the second term on
the right in (2.4.18) represents an absolutely convergent integral. Moreover, in view
of Theorem 2.3.20 in [156] and Corollary 2.1.9, both terms on the right in (2.4.18)
are controlled by a finite sum of seminorms ρα,β (φ) (cf. Definition 2.2.1 in [156]).
This defines T ( f ) as a tempered distribution for every f ∈ H p.

The following is an extension of Theorem 2.4.1 for p < 1.

Theorem 2.4.3. Let 0 < p < 1 and N = [ n
p − n] + 1. Let K be a C ∞ function on

Rn \ {0} that satisfies (2.4.13) and (2.4.12) for some A < ∞ for all multi-indices
|β | ≤ N and all x 6= 0. Let W be a tempered distribution that coincides with K on
Rn\{0}, as defined in (2.4.14). Then there is a constant Cn,p such that for all f ∈H p

the distribution T ( f ) defined in (2.4.18) coincides with an Lp function that satisfies∥∥T ( f )
∥∥

Lp ≤Cn,p A
∥∥ f
∥∥

H p .
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Proof. The proof of this theorem is based on the atomic decomposition of H p.
We first take f = a to be an L2-atom for H p, and without loss of generality we

may assume that a is supported in a cube Q centered at the origin. We let Q∗ be the
cube with side length 2

√
nℓ(Q), where ℓ(Q) is the side length of Q. We have(∫

Q∗
|T (a)(x)|p dx

) 1
p

≤ C|Q∗|
1
p− 1

2

(∫
Q∗

|T (a)(x)|2 dx
) 1

2

≤ C′′A|Q|
1
p− 1

2

(∫
Q
|a(x)|2 dx

) 1
2

≤ Cn A |Q|
1
p− 1

2 |Q|
1
2− 1

p

= Cn A ,

where we used that T is L2 bounded with norm at most a constant multiple of A.
For x /∈ Q∗ and y ∈ Q, we have |x| ≥ 2|y|, and thus x− y stays away from zero

and K(x− y) is well defined. We have

T (a)(x) =
∫

Q
K(x− y)a(y)dy .

Recall that N = [ n
p −n]+1. Using the cancellation of atoms in H p, we deduce

T (a)(x) =
∫

Q
a(y)K(x− y)dy

=
∫

Q
a(y)

[
K(x− y)− ∑

|β |≤N−1
(∂ β K)(x)

(−y)β

β !

]
dy

=
∫

Q
a(y)

[∫ 1

0
(N +1)(1−θ)N

∑
|β |=N

(∂ β K)(x−θy)
(−y)β

β !
dθ

]
dy .

for some 0 ≤ θy ≤ 1 by Appendix I in [156]. The fact that |x| ≥ 2|y| implies that
|x−θy| ≥ 1

2 |x| and using (2.4.12) we obtain the estimate

|T (a)(x)| ≤ cn,N
A

|x|N+n

∫
Q
|a(y)| |y|N dy ,

from which it follows that for x /∈ Q∗ we have

|T (a)(x)| ≤ cn,p
A

|x|N+n |Q|1+
N
n − 1

p

via a calculation using Hölder’s inequality and the fact that ∥a∥Lq ≤ |Q|
1
q− 1

p . Inte-
grating over (Q∗)c, we obtain that(∫

(Q∗)c
|T (a)(x)|pdx

) 1
p

≤ cn,p A |Q|1+
N
n − 1

p

(∫
(Q∗)c

1
|x|p(N+n)

dx
) 1

p

≤ c′n,p A .


