2.4 Singular Integrals on Function Spaces

Proof. Let Ψ be a Schwartz function whose Fourier transform is supported in the annulus $1 - \frac{1}{7} \le |\xi| \le 2$ and that satisfies

$$\sum_{j\in\mathbf{Z}}\widehat{\Psi}(2^{-j}\xi)=1\,,\qquad \xi\neq 0$$

Pick a Schwartz function ζ whose Fourier transform $\widehat{\zeta}$ is supported in the annulus $\frac{1}{4} < |\xi| < 8$ and that is equal to one on the support of $\widehat{\Psi}$. Let *W* be the tempered distribution that coincides with *K* on $\mathbb{R}^n \setminus \{0\}$ so that T(f) = f * W. Then we have $\zeta_{2^{-j}} * \Psi_{2^{-j}} = \Psi_{2^{-j}}$ for all *j* and hence

$$\begin{aligned} \left\| \Delta_{j}(T(f)) \right\|_{L^{p}} &= \left\| \zeta_{2^{-j}} * \Psi_{2^{-j}} * W * f \right\|_{L^{p}} \\ &\leq \left\| \zeta_{2^{-j}} * W \right\|_{L^{1}} \left\| \Delta_{j}(f) \right\|_{L^{p}}, \end{aligned}$$
(2.4.11)

since $1 \le p \le \infty$. It is not hard to check that the function $\zeta_{2^{-j}}$ is in H^1 with norm independent of *j*. Therefore, $\zeta_{2^{-j}}$ is in H^1 . Using Theorem 2.4.1, we conclude that

$$||T(\zeta_{2^{-j}})||_{L^1} = ||\zeta_{2^{-j}} * W||_{L^1} \le C ||\zeta_{2^{-j}}||_{H^1} = C'.$$

Inserting this in (2.4.11), multiplying by $2^{j\alpha}$, and taking ℓ^q quasi-norms, we obtain the required conclusion.

2.4.3 Singular Integrals on $H^p(\mathbb{R}^n)$

It is possible to extend Theorem 2.4.1 to $H^p(\mathbf{R}^n)$ for p < 1, provided the kernel *K* has additional smoothness.

For the purposes of this subsection, we fix a \mathscr{C}^{∞} function K(x) on $\mathbb{R}^n \setminus \{0\}$. We suppose that there is a positive integer *N* (to be specified later) such that

$$|\partial^{\beta} K(x)| \le A |x|^{-n-|\beta|} \quad \text{for all } |\beta| \le N \quad (2.4.12)$$

and that

$$\sup_{0 < R_1 < R_2 < \infty} \left| \int_{R_1 < |x| < R_2} K(x) \, dx \right| \le A, \qquad (2.4.13)$$

for some $A < \infty$.

We fix a nonnegative smooth function η on \mathbb{R}^n that vanishes in the unit ball of \mathbb{R}^n and is equal to 1 outside the ball B(0,2) and for $0 < \varepsilon < 1/2$ we define the smoothly truncated family of kernels

$$K^{(\varepsilon)}(x) = K(x)\eta(x/\varepsilon)$$

and the doubly smoothly truncated family of kernels

$$K_{(\varepsilon)}(x) = K(x)\eta(x/\varepsilon) - K(x)\eta(\varepsilon x).$$

Condition (2.4.12) with $\beta = 0$ and (2.4.13) imply that

$$\left|\int_{|x|\leq 1} K(x)\eta(x/\varepsilon)\,dx\right|\leq (1+\omega_{n-1}\log 2)A$$

for all $\varepsilon < 1/2$; hence there exists a sequence $\varepsilon_j < 1/2$ with $\varepsilon_j \downarrow 0$ as $j \to \infty$ such that the following limit exists:

$$\lim_{j\to\infty}\int_{|x|\leq 1}K(x)\eta(x/\varepsilon_j)\,dx=L_0.$$

We now define W in $\mathscr{S}'(\mathbf{R}^n)$ by setting

$$\langle W, \varphi \rangle = \lim_{j \to \infty} \int_{\mathbf{R}^n} K_{(\varepsilon_j)}(x) \varphi(x) dx$$

$$= L_0 \varphi(0) + \int_{|x| \le 1} K(x) (\varphi(x) - \varphi(0)) dx + \int_{|x| \ge 1} K(x) \varphi(x) dx$$

$$(2.4.14)$$

for φ in \mathscr{S} . It is quite easy to verify that the preceding expression is bounded by a constant multiple of a finite sum of Schwartz seminorms of φ . Note that this distribution⁴ depends on the number L_0 and hence on the bump η .

We define the associated doubly smoothly truncated singular integral by setting

$$T_{(\varepsilon)}(\varphi)(x) = \int_{\mathbf{R}^n} K_{(\varepsilon)}(y)\varphi(x-y)\,dy \qquad (2.4.15)$$

for Schwartz functions φ on \mathbf{R}^n .

We also define an operator T given by convolution with W by setting

$$T(\varphi) = \lim_{i \to \infty} T_{(\varepsilon_j)}(\varphi) = \varphi * W$$
(2.4.16)

for $\varphi \in \mathscr{S}(\mathbf{R}^n)$. Observe that *W* coincides with *K* on $\mathbf{R}^n \setminus \{0\}$, since if φ is supported in $|x| \ge t_0 > 0$, (2.4.14) implies that the action of *W* on $\varphi \in \mathscr{S}$ coincides with that of $K^{(\varepsilon_j)}$ on φ when $\varepsilon_j < t_0/2$. Condition (2.4.12) with $|\beta| = 1$ implies

$$\sup_{y \neq 0} \int_{|x| \ge 2|y|} |K(x-y) - K(x)| \, dx \le cA; \qquad (2.4.17)$$

hence Theorem 5.4.1 in [156] yields the L^2 boundedness of T. Note that (2.4.17) also holds for $K_{(\varepsilon)}$ in place of K uniformly in ε ; thus again by Theorem 5.4.1 in [156] the operators $T_{(\varepsilon)}$ are uniformly bounded on $L^2(\mathbb{R}^n)$.

132

⁴ Alternatively, we could have defined *W* as an element of $\mathscr{S}'(\mathbf{R}^n)/\mathscr{P}(\mathbf{R}^n)$ acting on functions $\varphi \in \mathscr{S}_0$; in this case *W* would have been independent of L_0 and η .

2.4 Singular Integrals on Function Spaces

We summarize these and other observations about $K_{(\varepsilon)}$, $T_{(\varepsilon)}$, and T.

- (i) The kernels $K_{(\varepsilon)}$ satisfy the same estimates as *K* uniformly in ε with constant A' in place of *A*, where A' is comparable to *A*.
- (ii) $T_{(\varepsilon)}$ are uniformly bounded on L^2 .
- (iii) $T_{(\varepsilon_i)}(g)$ tends to T(g) in L^2 for any $g \in L^2(\mathbb{R}^n)$.
- (iv) *T* is L^2 bounded with norm $\|\widehat{W}\|_{L^{\infty}} \leq CA$.
- (v) For any $f \in H^p$, T(f) is a well-defined element of \mathscr{S}' .

We have already explained assertions (i) and (ii) and (iv). We explain (iii). Theorem 5.3.4 in [156] gives that for all $g \in L^2$ we have

$$\sup_{\varepsilon>0} |T_{(\varepsilon)}(g)| \leq M(T(g)) + C_n A M(g);$$

hence the maximal operator $T^{(**)}(g) = \sup_{\varepsilon > 0} |T_{(\varepsilon)}(g)|$ is L^2 bounded. Moreover, as an easy consequence of (2.4.14), for each $\varphi \in \mathscr{S}$ we have $T_{(\varepsilon_j)}(\varphi) \to T(\varphi)$ pointwise everywhere. In view of Theorem 2.1.14 in [156], for every $g \in L^2(\mathbb{R}^n)$ we have $T_{(\varepsilon_i)}(g) - T(g) \to 0$ a.e. as $j \to \infty$. Since

$$|T_{(\varepsilon_i)}(g) - T(g)| \le 2T^{(**)}(g) \in L^2$$
,

the Lebesgue dominated convergence theorem yields that $T_{(\varepsilon_i)}(g) - T(g) \rightarrow 0$ in L^2 .

To verify the validity of (v) we write $W = W_0 + K_\infty$, where $W_0 = \Phi W$ and $K_\infty = (1 - \Phi)K$, where Φ is a smooth function equal to one on the ball B(0,1) and vanishing outside the ball B(0,2). Then for f in $H^p(\mathbb{R}^n)$, 0 , we define a tempered distribution <math>T(f) = W * f by setting

$$\langle T(f), \phi \rangle = \langle f, \phi * \widetilde{W_0} \rangle + \langle \widetilde{\phi} * f, \widetilde{K_{\infty}} \rangle$$
 (2.4.18)

for ϕ in $\mathscr{S}(\mathbb{R}^n)$. (Here $\widetilde{\phi}(x) = \phi(-x)$ for functions and analogously for distributions.) The function $\phi * \widetilde{W_0}$ is in \mathscr{S} , so the action of f on it is well defined. Also $\widetilde{\phi} * f$ is in L^1 (see Proposition 2.1.9), while $\widetilde{K_{\infty}}$ is in L^{∞} ; hence the second term on the right in (2.4.18) represents an absolutely convergent integral. Moreover, in view of Theorem 2.3.20 in [156] and Corollary 2.1.9, both terms on the right in (2.4.18) are controlled by a finite sum of seminorms $\rho_{\alpha,\beta}(\phi)$ (cf. Definition 2.2.1 in [156]). This defines T(f) as a tempered distribution for every $f \in H^p$.

The following is an extension of Theorem 2.4.1 for p < 1.

Theorem 2.4.3. Let $0 and <math>N = [\frac{n}{p} - n] + 1$. Let K be a \mathscr{C}^{∞} function on $\mathbb{R}^n \setminus \{0\}$ that satisfies (2.4.13) and (2.4.12) for some $A < \infty$ for all multi-indices $|\beta| \le N$ and all $x \ne 0$. Let W be a tempered distribution that coincides with K on $\mathbb{R}^n \setminus \{0\}$, as defined in (2.4.14). Then there is a constant $C_{n,p}$ such that for all $f \in H^p$ the distribution T(f) defined in (2.4.18) coincides with an L^p function that satisfies

$$||T(f)||_{L^p} \leq C_{n,p}A ||f||_{H^p}.$$

Proof. The proof of this theorem is based on the atomic decomposition of H^p .

We first take f = a to be an L^2 -atom for H^p , and without loss of generality we may assume that a is supported in a cube Q centered at the origin. We let Q^* be the cube with side length $2\sqrt{n}\ell(Q)$, where $\ell(Q)$ is the side length of Q. We have

$$\begin{split} \left(\int_{Q^*} |T(a)(x)|^p \, dx\right)^{\frac{1}{p}} &\leq C |Q^*|^{\frac{1}{p} - \frac{1}{2}} \left(\int_{Q^*} |T(a)(x)|^2 \, dx\right)^{\frac{1}{2}} \\ &\leq C'' A |Q|^{\frac{1}{p} - \frac{1}{2}} \left(\int_{Q} |a(x)|^2 \, dx\right)^{\frac{1}{2}} \\ &\leq C_n A |Q|^{\frac{1}{p} - \frac{1}{2}} |Q|^{\frac{1}{2} - \frac{1}{p}} \\ &= C_n A, \end{split}$$

where we used that T is L^2 bounded with norm at most a constant multiple of A.

For $x \notin Q^*$ and $y \in Q$, we have $|x| \ge 2|y|$, and thus x - y stays away from zero and K(x - y) is well defined. We have

$$T(a)(x) = \int_Q K(x-y) a(y) dy.$$

Recall that $N = \left[\frac{n}{p} - n\right] + 1$. Using the cancellation of atoms in H^p , we deduce

$$T(a)(x) = \int_{Q} a(y)K(x-y)dy$$

= $\int_{Q} a(y) \left[K(x-y) - \sum_{|\beta| \le N-1} (\partial^{\beta} K)(x) \frac{(-y)^{\beta}}{\beta!} \right] dy$
= $\int_{Q} a(y) \left[\int_{0}^{1} (N+1)(1-\theta)^{N} \sum_{|\beta|=N} (\partial^{\beta} K)(x-\theta y) \frac{(-y)^{\beta}}{\beta!} d\theta \right] dy.$

for some $0 \le \theta_y \le 1$ by Appendix I in [156]. The fact that $|x| \ge 2|y|$ implies that $|x - \theta_y| \ge \frac{1}{2}|x|$ and using (2.4.12) we obtain the estimate

$$|T(a)(x)| \le c_{n,N} \frac{A}{|x|^{N+n}} \int_{Q} |a(y)| |y|^{N} dy,$$

from which it follows that for $x \notin Q^*$ we have

$$|T(a)(x)| \le c_{n,p} \frac{A}{|x|^{N+n}} |Q|^{1+\frac{N}{n}-\frac{1}{p}}$$

via a calculation using Hölder's inequality and the fact that $||a||_{L^q} \leq |Q|^{\frac{1}{q}-\frac{1}{p}}$. Integrating over $(Q^*)^c$, we obtain that

$$\left(\int_{(Q^*)^c} |T(a)(x)|^p dx\right)^{\frac{1}{p}} \le c_{n,p} A |Q|^{1+\frac{N}{n}-\frac{1}{p}} \left(\int_{(Q^*)^c} \frac{1}{|x|^{p(N+n)}} dx\right)^{\frac{1}{p}} \le c'_{n,p} A.$$

134