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Proof. Let ¥ be a Schwartz function whose Fourier transform is supported in the
annulus 1 — % < |€| < 2 and that satisfies

Y Peig) =1, £#£0.

jez

Pick a Schwartz function { whose Fourier transform { is supported in the annulus
% < |&] < 8 and that is equal to one on the support of @Y. Let W be the tempered
distribution that coincides with K on R"\ {0} so that T(f) = f *W. Then we have
& ix¥ ;=¥ forall j and hence

HAJ'(T(f))HLP = HCzﬁ * ¥ *W*fHU,

(2.4.11)
< HgZ*f *WHL‘ HAJ'(f)HLP’

since 1 < p < oo, It is not hard to check that the function §, ; is in H ' with norm
independent of j. Therefore, {,-; is in H'. Using Theorem 2.4.1, we conclude that

HT(CT/')HLI = HQ*/’*WHU < CHCZ*/'HHI =C.

Inserting this in (2.4.11), multiplying by 2/%, and taking ¢4 quasi-norms, we obtain
the required conclusion. U

2.4.3 Singular Integrals on H? (R")

It is possible to extend Theorem 2.4.1 to H?(R") for p < 1, provided the kernel K
has additional smoothness.

For the purposes of this subsection, we fix a ¢ function K (x) on R"\ {0}. We
suppose that there is a positive integer N (to be specified later) such that

10PK(x)| <Alx|"7 Bl forall |B| <N (2.4.12)
and that
sup K(x)dx| <A, (2.4.13)
O0<R;<Rp<eo
R1<\x|<R2

for some A < oo,
We fix a nonnegative smooth function 1) on R” that vanishes in the unit ball of R"
and is equal to 1 outside the ball B(0,2) and for 0 < € < 1/2 we define the-smeothly

truncated family-of kernels
e lra
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and the doubly smoothly truncated family of kernels
Kie)(x) = K(x)1(x/€) — K(x)n (ex)..
Condition (2.4.12) with § = 0 and (2.4.13) imply that

K(x)n(x/€)dx| < (14 w,—110g2)A

‘ x[<1

for all € < 1/2; hence there exists a sequence &; < 1/2 with &; | 0 as j — oo such
that the following limit exists:

lim K(x)n(x/Ej)dXZLo.

J—roo lx|<1

We now define W in ./ (R") by setting

(W.0) = lim | Kie))(x)p(x)dx (2.4.14)
= Log(0)+ [ K()(o() 90Dt | K(g(dx

for @ in .. It is quite easy to verify that the preceding expression is bounded by
a constant multiple of a finite sum of Schwartz seminorms of ¢. Note that this
distribution* depends on the number Lg and hence on the bump 7.

We define the associated doubly smoothly truncated singular integral by setting

Tie)(@)(x) = [ Kiey()@lx—y)dy (2.4.15)

for Schwartz functions ¢ on R”.
We also define an operator T given by convolution with W by setting

T(¢)=1im T (@) =@xW (2.4.16)

Jree

for ¢ € .Z(R"). Observe that W coincides with K on R"\ {0}, since if ¢ is supported
in |x| > 1 > 0, (2.4.14) implies that the action of W on ¢ € . coincides with that
of K(€) on @ when ¢; < 1o/2. Condition (2.4.12) with | 8| = 1 implies

sup/ |IK(x—y)—K(x)|dx < cA; (2.4.17)
y7#0 J1x1>2y]

hence Theorem 5.4.1 in [156] yields the L? boundedness of T. Note that (2.4.17)
also holds for K(¢) in place of K uniformly in &; thus again by Theorem 5.4.1 in

[156] the operators T(¢) are uniformly bounded on L>(R").

4 Alternatively, we could have defined W as an element of .#’ (R")/ % (R") acting on functions
¢ € .Y; in this case W would have been independent of Ly and 7.
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We summarize these and other observations about K(¢), T(¢), and 7.

(i) The kernels K¢ satisfy the same estimates as K uniformly in & with constant
A’ in place of A, where A’ is comparable to A.
(ii) T(¢) are uniformly bounded on L.
(iii) T(¢;)(g) tends to T'(g) in L? for any g € L*(R").
(iv) T is L2 bounded with norm ||W ||z~ < CA.
(v) Forany f € HP, T(f) is a well-defined element of .7".

We have already explained assertions (i) and (ii) and (iv).
We explain (iii). Theorem 5.3.4 in [156] gives that for all g € L? we have

sup [T(e)(8)| < M(T'(g)) + CLAM(g):;

>0

hence the maximal operator 7(**)(g) = sup,-, |Tie)(g)| is L? bounded. Moreover,
as an easy consequence of (2.4.14), for each ¢ € . we have T(sj)((p) — T(0)

pointwise everywhere. In view of Theorem 2.1.14 in [156], for every g € L*>(R") we
have T( ) (g)—T(g) = 0ae. as j — . Since

|Tie;)(8) — T(g)| <27 (g) € L2,

the Lebesgue dominated convergence theorem yields that T(¢ ) (g) —T'(g) — 0in L2,

To verify the validity of (v) we write W = Wy + K., where Wy = ®W and
Ko = (1 — @)K, where @ is a smooth function equal to one on the ball B(0,1)
and vanishing outside the ball B(0,2). Then for f in H”(R"), 0 < p < 1, we define
a tempered distribution T'(f) = W x f by setting

(T(f),0) = (f.¢*Wo) + (@ * f,Kz) (2.4.18)

for ¢ in .(R"). (Here @(x) = ¢(—x) for functions and analogously for distribu-
tions.) The function ¢ * V% is in &, so the action of f on it is well defined. Also
¢ * fisin L! (see Proposition 2.1.9), while K.. is in L*=; hence the second term on
the right in (2.4.18) represents an absolutely convergent integral. Moreover, in view
of Theorem 2.3.20 in [156] and Corollary 2.1.9, both terms on the right in (2.4.18)
are controlled by a finite sum of seminorms py g(¢) (cf. Definition 2.2.1 in [156]).
This defines T'(f) as a tempered distribution for every f € HP.
The following is an extension of Theorem 2.4.1 for p < 1.

Theorem 2.4.3. Let 0 < p <1 and N = [ —n] + 1. Let K be a ¢ function on
R"\ {0} that satisfies (2.4.13) and (2.4.12) for some A < o for all multi-indices
|B| < N and all x # 0. Let W be a tempered distribution that coincides with K on
R"\ {0}, as defined in (2.4.14). Then there is a constant Cy, , such that for all f € H?
the distribution T (f) defined in (2.4.18) coincides with an LP function that satisfies

Tl < CopAll 1l
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Proof. The proof of this theorem is based on the atomic decomposition of H”.

We first take f = a to be an L?-atom for H”, and without loss of generality we
may assume that a is supported in a cube Q centered at the origin. We let O* be the
cube with side length 2,/n¢(Q), where ¢(Q) is the side length of Q. We have

( Q*|T(a)(X)|pdx>}) = ClQ*}’_%( |T(a)(x)2dX>%

C"AlQ|7 2(/|a |2dx)

< G,AlQP 2ol
= C,A,

IN

where we used that 7 is L? bounded with norm at most a constant multiple of A.
For x ¢ Q* and y € Q, we have |x| > 2|y|, and thus x — y stays away from zero
and K (x —y) is well defined. We have

¥) = /Q K(x—y)a(y)dy

Recall that N = [% —n] + 1. Using the cancellation of atoms in H?, we deduce

T@)) = [ av)K(e—)dy
. ()f
[a0)|K—3)- T @K |ay

|BI<N—1

_/ [/ (N+1)(1—6)Y BZ_’N@BK)()C—B)/)(B')BdB}d.

forsome-0-<6;<1 by Appendix I in [156]. The fact that |x| > 2|y| implies that
x— 0y| > 5|x| and usin 4. we obtain the estimate
6y| > 1|x| and using (2.4.12) we obtain the esti

IT(a)(x)] < NH% /Q la)| vV dy,

from which it follows that for x ¢ Q* we have

A 1+N_1
T (a)(x)] SCVLPW‘Q| T

1
via a calculation using Holder’s inequality and the fact that ||a||zs < |Q|¢” 7. Inte-
grating over (Q*)¢, we obtain that

1 ) 1
Py )’ 141 / N,
</(Q*)C ‘T(a) (X)| dx> = CmpA |Q‘ 3 (0%)¢ |x|P(N+n) dx < Cn,I’A'



