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as N→ ∞, where the last inequality follows from Exercise 2.3.5(a).
Next we show that each A j is a fixed multiple of an L2-atom for H p. Let us fix an

index j. By the definition of the ∞-atom for
.
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as M′,M → ∞. Therefore the sequence ∑|µ|≤M ∑Q∈Dµ
r j,QaQ is Cauchy in L1 and

hence it converges in L1. But this sequence converges in H p to A j by Theorem
2.3.4, so finally it converges to A j in L1.

The fact that A j = ∑µ∈Z ∑Q∈Dµ
r j,QaQ with convergence in L1 allows us to de-

duce that vanishing moments of aQ pass on to A j. We conclude that each A j is a
fixed multiple of an L2-atom for H p. The ≥ direction in (2.3.28) now follows from
(2.3.29), given that we have now established all the remaining properties. �

Remark 2.3.13. Property (c) in Definition 2.3.10 can be replaced by∫
xγ A(x)dx = 0 for all multi-indices γ with |γ| ≤ L,

for any L≥ [ n
p −n], and the atomic decomposition of H p holds unchanged. In fact,

in the proof of Theorem 2.3.12 we may take L ≥ [ n
p − n] instead of L = [ n

p − n]
and then apply Theorem 2.3.4 for this L. Note that Theorem 2.3.4 was valid for all
L≥ [ n

p −n]. This observation turns out to be quite useful in certain applications.

Exercises

2.3.1. (a) Given N ∈ Z+, prove that there exists a smooth function Θ supported in
the unit ball |x| ≤ 1 such that

∫
Rn xγ Θ(x)dx = 0 for all multi-indices γ with |γ| ≤ N

and such that |Θ̂(ξ )| ≥ 1
2 for all ξ in the annulus 1

2 ≤ |ξ | ≤ 2.
(b) Prove there exists a Schwartz function Ψ whose Fourier transform is supported
in the annulus 1

2 ≤ |ξ | ≤ 2, with |Ψ̂(ξ )| ≥ c > 0 in the smaller annulus 3
5 ≤ |ξ | ≤ 5

3 ,
and which satisfies for all ξ ∈ Rn \{0}

∑
j∈Z

Ψ̂(2− j
ξ )Θ̂(2− j

ξ ) = 1 .

[
Hint: Part (a): Let θ be an even real-valued smooth function supported in the ball
|x| ≤ 1 and such that θ̂(0) = 1. Then for some ε ∈ (0, 1

2 ) we have θ̂(ξ )≥ 1
2 for all


