2.3 Atomic Decomposition of Homogeneous Triebel-Lizorkin Spaces

Since $||s||_{\dot{f}_p^{0,2}} \le C_{n,p} ||f||_{H^p}$, Theorem 2.3.4 implies that

$$\left(\sum_{j=1}^{\infty} |\lambda_j|^p\right)^{\frac{1}{p}} \le c' \|f\|_{H^p}.$$
(2.3.29)

For j = 1, 2, ... set

$$A_j = \sum_{\mu \in \mathbf{Z}} \left(\sum_{Q \in \mathscr{D}_{\mu}} r_{j,Q} a_Q \right)$$

where the series converges in H^p (see Theorem 2.3.4) and the H^p quasi-norm of A_j is bounded by a constant in view of (2.3.4), since $||r_j||_{f_p^{0,2}} \le 1$. Using again (2.3.4) in Theorem 2.3.4 we obtain

$$ig\|\sum_{j=1}^N \lambda_j A_j - fig\|_{H^p}^p \leq C_{n,p}^p ig\|\sum_{j=1}^N \lambda_j r_j - sig\|_{\dot{f}_p^{0,2}}^p \ \leq C_{n,p}^p ig\|\sum_{j=N+1}^\infty |\lambda_j| \, |r_j| ig\|_{\dot{f}_p^{0,2}}^p \ \leq C_{n,p}^p \sum_{j=N+1}^\infty |\lambda_j|^p o 0 \,,$$

as $N \rightarrow \infty$, where the last inequality follows from Exercise 2.3.5(a).

Next we show that each A_j is a fixed multiple of an L^2 -atom for H^p . Let us fix an index j. By the definition of the ∞ -atom for $f_p^{0,2}$, there exists a dyadic cube Q_0^j such that $r_{j,Q} = 0$ for all dyadic cubes Q not contained in Q_0^j . Then the support of each a_Q is contained in 3Q, hence in $3Q_0^j$. This implies that the function A_j is supported in $3Q_0^j$. The same is true for the function $g^{0,2}(r_j)$ defined in (2.3.2). Using this fact, we have

$$\begin{split} \|A_j\|_{L^2} &\approx \|A_j\|_{\dot{F}_2^{0,2}} \\ &\leq c \, \|r_j\|_{\dot{f}_2^{0,2}} \\ &= c \, \|g^{0,2}(r_j)\|_{L^2} \\ &\leq c \, \|g^{0,2}(r_j)\|_{L^\infty} |3Q_0^j|^{\frac{1}{2}} \\ &\leq c \, |3Q_0^j|^{-\frac{1}{p}+\frac{1}{2}} \, . \end{split}$$

Since

$$g^{0,2}(r_j) = \left(\sum_{\mathcal{Q}\in\mathscr{D}} |\mathcal{Q}|^{-1} |r_{j,\mathcal{Q}}|^2 \chi_{\mathcal{Q}}\right)^{\frac{1}{2}}$$

the estimate $\|g^{0,2}(r_j)\|_{L^2} \le |3Q_0^j|^{-\frac{1}{p}+\frac{1}{2}}$ we proved implies that

$$\sum_{Q\in\mathscr{D}}|r_{j,Q}|^2<\infty.$$

Let M' < M be positive integers. Then

$$\begin{split} \left\| \sum_{M' < |\boldsymbol{\mu}| \le M} \sum_{\mathcal{Q} \in \mathscr{D}_{\boldsymbol{\mu}}} r_{j,\mathcal{Q}} a_{\mathcal{Q}} \right\|_{L^{1}} &\leq |3\mathcal{Q}_{0}^{j}|^{\frac{1}{2}} \left\| \sum_{M' < |\boldsymbol{\mu}| \le M} \sum_{\mathcal{Q} \in \mathscr{D}_{\boldsymbol{\mu}}} r_{j,\mathcal{Q}} a_{\mathcal{Q}} \right\|_{L^{2}} \\ &= |3\mathcal{Q}_{0}^{j}|^{\frac{1}{2}} \left(\sum_{M' < |\boldsymbol{\mu}| \le M} \sum_{\mathcal{Q} \in \mathscr{D}_{\boldsymbol{\mu}}} |r_{j,\mathcal{Q}}|^{2} \right)^{\frac{1}{2}} \to 0 \end{split}$$

as $M', M \to \infty$. Therefore the sequence $\sum_{|\mu| \le M} \sum_{Q \in \mathscr{D}_{\mu}} r_{j,Q} a_Q$ is Cauchy in L^1 and hence it converges in L^1 . But this sequence converges in H^p to A_j by Theorem 2.3.4, so finally it converges to A_j in L^1 .

The fact that $A_j = \sum_{\mu \in \mathbb{Z}} \sum_{Q \in \mathscr{D}_{\mu}} r_{j,Q} a_Q$ with convergence in L^1 allows us to deduce that vanishing moments of a_Q pass on to A_j . We conclude that each A_j is a fixed multiple of an L^2 -atom for H^p . The \geq direction in (2.3.28) now follows from (2.3.29), given that we have now established all the remaining properties.

Remark 2.3.13. Property (c) in Definition 2.3.10 can be replaced by

$$\int x^{\gamma} A(x) \, dx = 0 \quad \text{ for all multi-indices } \gamma \text{ with } |\gamma| \le L,$$

for any $L \ge [\frac{n}{p} - n]$, and the atomic decomposition of H^p holds unchanged. In fact, in the proof of Theorem 2.3.12 we may take $L \ge [\frac{n}{p} - n]$ instead of $L = [\frac{n}{p} - n]$ and then apply Theorem 2.3.4 for this *L*. Note that Theorem 2.3.4 was valid for all $L \ge [\frac{n}{p} - n]$. This observation turns out to be quite useful in certain applications.

Exercises

2.3.1. (a) Given $N \in \mathbb{Z}^+$, prove that there exists a smooth function Θ supported in the unit ball $|x| \leq 1$ such that $\int_{\mathbb{R}^n} x^{\gamma} \Theta(x) dx = 0$ for all multi-indices γ with $|\gamma| \leq N$ and such that $|\widehat{\Theta}(\xi)| \geq \frac{1}{2}$ for all ξ in the annulus $\frac{1}{2} \leq |\xi| \leq 2$.

(b) Prove there exists a Schwartz function Ψ whose Fourier transform is supported in the annulus $\frac{1}{2} \le |\xi| \le 2$, with $|\widehat{\Psi}(\xi)| \ge c > 0$ in the smaller annulus $\frac{3}{5} \le |\xi| \le \frac{5}{3}$, and which satisfies for all $\xi \in \mathbb{R}^n \setminus \{0\}$

$$\sum_{j\in\mathbf{Z}}\widehat{\Psi}(2^{-j}\xi)\widehat{\Theta}(2^{-j}\xi)=1.$$

Hint: Part (a): Let θ be an even real-valued smooth function supported in the ball $|x| \le 1$ and such that $\hat{\theta}(0) = 1$. Then for some $\varepsilon \in (0, \frac{1}{2})$ we have $\hat{\theta}(\xi) \ge \frac{1}{2}$ for all

124