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where {λ1,λ2, . . .}= {λk,J : (k,J) ∈U } and {r1,r2, . . .}= {r(k,J) : (k,J) ∈U }.
As observed the sum in (2.3.21) has the property that for each Q∈D , there is at most
one k ∈ Z and at most one J ∈Bk such that λk,J r(k,J)Q = t(k,J)Q is nonzero. Thus
for each Q ∈ D , at most one term in the sum ∑

∞
j=1 λ jr j,Q is nonzero; in particular,

this series is absolutely convergent.
Finally, we estimate the sum of the pth power of the coefficients λk,J . We have
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Taking the pth root yields (2.3.15). The proof of the theorem is now complete. �

We now deduce a corollary concerning a new characterization of the space
.
f α,q
p .

Corollary 2.3.7. Suppose α ∈ R, 0 < p ≤ 1, and p ≤ q < ∞. Then for a given se-
quence s ∈
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Remark 2.3.8. Notice that
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p is complete (Exercise 2.3.5(b)), so if r j are ∞-atoms
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