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Given a distribution f € Fpa’q, using identity (2.3.13), we write
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where the convergence is in .’/ (R")/ 2 (R") in view of Corollary 1.1.7.
For each Q in 9; define a constant

1
so = 0|2 sup|(¥yo)* /))| sup 070,
y€Q [YI<L+1

and a function
1
ag(x) = S0 /Q@e(g) (x=y)(Fyo) * f)(v)dy- (2.3.14)

It is straightforward to verify that ag is supported in 3Q and that it has vanishing
moments up to and including order L, since ® does so. Moreover, using (2.3.14) we
obtain for all |y| <L+ 1
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which makes the function agp a smooth L-atom.
Using this notation, we write

1=X ¥ [ 0nstc=ntenar=1 ( ¥ souc).
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where the series in j converges in ./ (R")/ Z(R").
Let b be as in (2.3.9). Now note that
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where we used the fact that in the first inequality there is only one nonzero term in
the sum because of the appearance of the characteristic function. Summing over all
J € Z", raising to the power 1 /¢, and taking L” norms yields the estimate

1
[fsedollzea < ]|( ) e r)lY) | <l
je

Lr



