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or, equivalently, ∥∥Is( f )
∥∥

Lq(Rn)
≤C(p,q,n,s)λ

n
q− n

p+Res∥∥ f
∥∥

Lp(Rn)
. (1.2.6)

If 1
p > 1

q +
Res

n , then we let λ → ∞ in (1.2.6), whereas if 1
p < 1

q +
Res

n , then we let
λ → 0 in (1.2.6). In both cases we obtain that Is( f ) = 0 for all Schwartz functions
f , but this is obviously not the case for the function f (x) = e−π|x|2 . It follows that
(1.2.4) must necessarily hold.

This example provides an excellent paradigm of situations where the homogene-
ity (or the dilation structure) of an operator dictates a relationship on the indices p
and q for which it (may) map Lp to Lq.

As we saw in Remark 1.2.2, if the Riesz potentials map Lp to Lq for some p,q,
then we must have q > p. Such operators that improve the integrability of a function
are called smoothing. The importance of the Riesz potentials lies in the fact that
they are indeed smoothing operators. This is the essence of the Hardy–Littlewood–
Sobolev theorem on fractional integration, which we now formulate and prove.
Since

|Is( f )| ≤ IRes(| f |) ,
one may restrict the study of Is( f ) to nonnegative functions f and s > 0.

Theorem 1.2.3. Let s be a real number, with 0< s< n, and let 1< p< q<∞ satisfy

1
p
− 1

q
=

s
n
.

Then there exist constants C(n,s, p),C(s,n) < ∞ such that for all f in S (Rn) we
have ∥∥Is( f )

∥∥
Lq ≤C(n,s, p)

∥∥ f
∥∥

Lp

and ∥∥Is( f )
∥∥

L
n

n−s ,∞
≤C(n,s)

∥∥ f
∥∥

L1 .

Consequently Is has a unique extension on Lp(Rn) for all p with 1 ≤ p < n
s such

that the preceding estimates are valid.

Proof. For a given nonnegative (and nonzero) function f in the Schwartz class we
write ∫

Rn
f (x− y)|y|s−n dy = I1( f )(x)+ I2( f )(x),

where I1 and I2 are defined by

I1( f )(x) =
∫
|y|<R(x)

f (x− y)|y|s−n dy,

I2( f )(x) =
∫
|y|≥R(x)

f (x− y)|y|s−n dy,


