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or, equivalently,

n

||Zv(f)||Lq(R:z) < C(pv%nvs))tg_p+ReSHfHLP(Rn) : (1.2.6)

If % > é + %, then we let A — oo in (1.2.6), whereas if % < é—&- %, then we let
A — 01in (1.2.6). In both cases we obtain that Z;(f) = 0 for all Schwartz functions
f, but this is obviously not the case for the function f(x) = e~ 1t follows that
(1.2.4) must necessarily hold.

This example provides an excellent paradigm of situations where the homogene-
ity (or the dilation structure) of an operator dictates a relationship on the indices p
and g for which it (may) map L? to L9.

As we saw in Remark 1.2.2, if the Riesz potentials map L? to L¢ for some p,q,
then we must have g > p. Such operators that improve the integrability of a function
are called smoothing. The importance of the Riesz potentials lies in the fact that
they are indeed smoothing operators. This is the essence of the Hardy-Littlewood—
Sobolev theorem on fractional integration, which we now formulate and prove.
Since

‘Is(f)‘ < IRes(|f|)a

one may restrict the study of Z;(f) to nonnegative functions f and s > 0.

Theorem 1.2.3. Let s be a real number, with 0 < s <n, and let 1 < p < g < oo satisfy

Then there exist constants C(n,s, p),C(s,n) < oo such that for all f in .7 (R") we
have

|Zs(A)llz0 < s, p)] 4]

Lp
and

IZ( e < €)1

Consequently I has a unique extension on LP(R") for all p with 1 < p <
that the preceding estimates are valid.

n

= such

Proof. For a given nonnegative (and nonzero) function f in the Schwartz class we
write

[ A=l dy = (D) + B,
where I; and I, are defined by

L(f)(x) = /|y\<R(x> fle=y)lyF™"dy,

B = [ sy



