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Using this fact and (2.2.28), we conclude that∥∥∥( M
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from which (2.2.25) follows directly by letting M→ ∞. We have now established
(2.2.25) for f ∈ H p∩L1. Using density, we can extend this estimate to all f ∈ H p.

We now turn to the converse statement of the theorem. Assume that (2.2.26)
holds for some tempered distribution f .

Set η̂(ξ ) = Ψ̂( 1
2 ξ )+Ψ̂(ξ )+Ψ̂(2ξ ). Then η̂ is supported in an annulus and is

equal to 1 on the support of Ψ̂ . Using Theorem 2.1.14 we obtain that for any L∈Z+

and L′ ∈ Z+∪{0} with L′ < L the mapping
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Indeed, Theorem 2.1.14 can be applied, since the family of kernels {η2− j}L′≤| j|<L

satisfies ∑L′≤| j|<L |∂ α
x (η2− j)(x)| ≤ Cα |x|−n−|α|, x 6= 0, for all multilindices α and

∑L′≤| j|<L |η̂2− j | ≤ c′ with constants independent of L,L′. Thus we have
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when Φ̂ is smooth, supported in B(0,2), and Φ̂(0) 6= 0 and any f j ∈ H p. Taking2
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Applying Corollary 2.2.5 for some r < p we arrive at the estimate∥∥∥ ∑
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Since r < min(2, p), we use the Lp/r(Rn, `
2/r
2L−2L′) to Lp/r(Rn, `

2/r
2L−2L′) boundedness

of the Hardy–Littlewood maximal operator (Theorem 5.6.6 in [156]) to obtain the
inequality

2 f j ∈ H p since supt>0 |Φt ∗∆Ψ
j ( f )| ≤C′M(|∆Ψ

j ( f )|r)1/r ∈ Lp for r < p in view of (2.2.26).


