2.2 Function Spaces and the Square Function Characterization of H^p

for all L, N > 0. We deduce the estimate

$$|V_j| \leq C_{L,M,n,\Theta,\Omega} 2^{-|j|M}$$

for all M sufficiently large, which, in turn, yields the estimate

$$\sum_{j\in\mathbf{Z}}|V_j|^{\min(1,q)}<\infty$$

We deduce from (2.2.20) that for all $x \in \mathbf{R}^n$ we have

$$\left\| \{ 2^{k\alpha} M_{b,k}^{**}(f;\Omega)(x) \}_k \right\|_{\ell^q} \le C_{\alpha,p,q,n,\Theta,\Omega} \left\| \{ 2^{k\alpha} M_{b,k}^{**}(f;\Theta)(x) \}_k \right\|_{\ell^q}.$$
(2.2.21)

Pick $r < \min(p,q)$. Estimate (2.2.7) in Lemma 2.2.3 with $b = \frac{n}{r} > \frac{n}{\min(p,q)}$ gives

$$2^{k\alpha}M_{b,k}^{**}(f;\Theta) \le C_2 2^{k\alpha}M(|\Delta_k^{\Theta}(f)|^r)^{\frac{1}{r}} = C_2M(|2^{k\alpha}\Delta_k^{\Theta}(f)|^r)^{\frac{1}{r}}.$$
 (2.2.22)

In view of (2.2.1) we have the identity

$$\Delta_k^{\Theta} = \Delta_k^{\Theta} \left(\Delta_{k-1}^{\Psi} + \Delta_k^{\Psi} + \Delta_{k+1}^{\Psi} \right),$$

and applying (2.2.14) to each term of the preceding sum yields

$$M(|2^{k\alpha}\Delta_{k}^{\Theta}(f)|^{r})^{\frac{1}{r}} \leq C' \left(MM(|2^{k\alpha}\Delta_{k}^{\Psi}(f)|^{r}) \right)^{\frac{1}{r}}.$$
 (2.2.23)

Since $r < \min(p,q)$, we combine (2.2.21), (2.2.22), (2.2.23), and we use twice the $L^{p/r}(\mathbf{R}^n, \ell^{q/r})$ to $L^{p/r}(\mathbf{R}^n, \ell^{q/r})$ boundedness of the Hardy–Littlewood maximal operator (Theorem 5.6.6 in [156]) to complete the proof.

2.2.4 The Littlewood–Paley Characterization of Hardy Spaces

We discuss an important characterization of Hardy spaces in terms of Littlewood– Paley square functions. The vector-valued Hardy spaces and the action of singular integrals on them are crucial tools in obtaining this characterization.

We have the following.

Theorem 2.2.9. Let Ψ be a Schwartz function on \mathbb{R}^n whose Fourier transform is nonnegative, supported in $\frac{6}{7} \leq |\xi| \leq 2$, equal to 1 on $1 \leq |\xi| \leq \frac{12}{7}$, and satisfies for all $\xi \neq 0$

$$\sum_{i\in\mathbf{Z}}\widehat{\Psi}(2^{-j}\xi) = 1.$$
(2.2.24)

Let Δ_j^{Ψ} be the Littlewood–Paley operators associated with Ψ and let 0 . $Then there exists a constant <math>C = C_{n,p,\Psi}$ such that for all $f \in H^p(\mathbf{R}^n)$ we have

$$\left\| \left(\sum_{j \in \mathbf{Z}} |\Delta_{j}^{\Psi}(f)|^{2} \right)^{\frac{1}{2}} \right\|_{L^{p}} \le C \left\| f \right\|_{H^{p}}.$$
(2.2.25)