provided -n < Re z < 0, in which case both $|\xi|^z$ and $|x|^{-z-n}$ are locally integrable functions. Dividing both sides of (1.2.2) by $\Gamma(\frac{n+z}{2})$ allows one to extend (1.2.2) to all complex numbers *z* as an identity between distributions; see Theorem 2.4.6 in [156] for details.

1.2.1 Riesz Potentials

When *s* is a positive real number, the operation $f \mapsto (-\Delta)^{-s/2} f$ is not really *differentiating f*; rather, it is *integrating*. For this reason, we introduce a slightly different notation that better reflects the nature of this operator.

Definition 1.2.1. Let *s* be a complex number with $0 < \text{Re } s < \infty$. The *Riesz potential operator* of order *s* is

$$\mathcal{I}_s = (-\Delta)^{-s/2}$$

Clearly \mathcal{I}_s is well defined on Schwartz functions whose Fourier transform vanishes in a neighborhood of the origin; if $\operatorname{Re} s < n$, the function $\xi \mapsto |\xi|^{-s}$ is locally integrable, and thus \mathcal{I}_s is well defined on the entire Schwartz class. Using identity (1.2.2), we express

$$\mathcal{I}_s(f)(x) = 2^{-s} \pi^{-\frac{n}{2}} \frac{\Gamma(\frac{n-s}{2})}{\Gamma(\frac{s}{2})} \int_{\mathbf{R}^n} f(x-y) |y|^{-n+s} dy,$$

and since this integral is convergent for all functions f in the Schwartz class, \mathcal{I}_s is well defined on this space for all s with Res > 0.

We begin with a simple remark concerning the homogeneity of the operator \mathcal{I}_s .

Remark 1.2.2. Suppose that for some $s \in \mathbf{C}$, with $\operatorname{Re} s > 0$, we had an estimate

$$\|\mathcal{I}_{s}(f)\|_{L^{q}(\mathbf{R}^{n})} \leq C(p,q,n,s)\|f\|_{L^{p}(\mathbf{R}^{n})}$$
 (1.2.3)

for some positive indices p,q and all $f \in \mathscr{S}(\mathbf{R}^n)$. Then p and q must be related by

$$\frac{1}{p} - \frac{1}{q} = \frac{\operatorname{Re}s}{n}.$$
(1.2.4)

This follows by applying (1.2.3) to the dilation $\delta^{\lambda}(f)(x) = f(\lambda x)$, $\lambda > 0$, in lieu of *f*. Indeed, replacing *f* by $\delta^{\lambda}(f)$ in (1.2.3) and using the identity

$$\mathcal{I}_{s}(\delta^{\lambda}(f)) = \lambda^{-s}\delta^{\lambda}(\mathcal{I}_{s}(f))$$

which follows by a changes of variables, we obtain

$$\lambda^{-\frac{n}{q}-\operatorname{Re} s} \left\| \mathcal{I}_{s}(f) \right\|_{L^{q}(\mathbf{R}^{n})} \leq C(p,q,n,s) \lambda^{-\frac{n}{p}} \left\| f \right\|_{L^{p}(\mathbf{R}^{n})}$$
(1.2.5)