2.6 Tempered Distributions

One can check that the operations of translation, dilation, reflection, and differentiation are continuous on tempered distributions.

Example 2.6.14. Let $x_0 \in \mathbf{R}^n$. Then we have $\widetilde{\delta_{x_0}} = \delta_{-x_0}$ (in particular, $\widetilde{\delta_0} = \delta_0$), also $(\delta_0)^t = t^{-n} \delta_0$, and $\tau^{x_0} \delta_0 = \delta_{x_0}$.

We now define the product of a function and a distribution.

Definition 2.6.15. Let $u \in \mathscr{S}'$ and let *h* be a \mathscr{C}^{∞} tempered function whose derivatives are also tempered. This means that for all multi-indices γ there are $C_{\gamma}, k_{\gamma} > 0$ such that $|\partial^{\gamma} h(x)| \leq C_{\gamma} (1 + |x|)^{k_{\gamma}}$. We define the product of *h* and *u* by setting

$$\langle hu, \varphi \rangle = \langle u, h\varphi \rangle, \qquad \varphi \in \mathscr{S}.$$
 (2.6.13)

To verify that *hu* is a well-defined element of \mathscr{S}' , we first verify that $h\varphi$ lies in \mathscr{S} ; indeed, for each pair of multi-indices α , β we have

$$ho_{lpha,eta}(harphi) \leq \sum_{\gamma\leqeta} C_{\gamma} C_{n,k_{\gamma}}^{-1} inom{eta_{1}}{\gamma_{1}} \cdots inom{eta_{n}}{\gamma_{n}} \sum_{|\delta|\leq k_{\gamma}}
ho_{lpha+\delta,eta-\gamma}(arphi) < \infty,$$

in view of Leibniz's rule, where $C_{n,k_{\gamma}}$ are the constants in (1.7.3). This implies that $|\langle hu, \varphi \rangle|$ is bounded by a finite sum of $\rho_{\gamma,\delta}(\varphi)$, thus *hu* lies in $\mathscr{S}'(\mathbf{R}^n)$.

To define the convolution of a function with a tempered distribution, we examine an identity for functions. Observe that for φ , ψ in $\mathscr{S}(\mathbf{R}^n)$ and any integrable function⁶ g on \mathbf{R}^n the identity holds:

$$\int_{\mathbf{R}^n} (\boldsymbol{\varphi} \ast g)(x) \boldsymbol{\psi}(x) \, dx = \int_{\mathbf{R}^n} g(x) (\widetilde{\boldsymbol{\varphi}} \ast \boldsymbol{\psi})(x) \, dx \,. \tag{2.6.14}$$

Motivated by (2.6.14), we give the following definition:

Definition 2.6.16. Let $u \in \mathscr{S}'$ and $\varphi \in \mathscr{S}$. Define the *convolution* $\varphi * u$ as follows:

$$\langle \boldsymbol{\varphi} \ast \boldsymbol{u}, \boldsymbol{\psi} \rangle = \langle \boldsymbol{u}, \widetilde{\boldsymbol{\varphi}} \ast \boldsymbol{\psi} \rangle, \qquad \boldsymbol{\psi} \in \mathscr{S}(\mathbf{R}^n).$$
 (2.6.15)

We note that $\varphi * u$ lies in $\mathscr{S}'(\mathbf{R}^n)$, since for all multi-indices α, β we have

$$\begin{split} \rho_{\alpha,\beta}(\widetilde{\varphi}*\psi) &\leq \sup_{x\in\mathbf{R}^n} \int_{\mathbf{R}^n} |x|^{|\alpha|} |\varphi(y-x)| \left| \partial^{\beta} \psi(y) \right| dy \\ &\leq 2^{|\alpha|} \sup_{x\in\mathbf{R}^n} \int_{\mathbf{R}^n} (|y-x|^{|\alpha|} + |y|^{|\alpha|}) |\varphi(y-x)| \left| \partial^{\beta} \psi(y) \right| dy \\ &\leq C_{\alpha,\beta,\phi} \big(\rho_{0,\beta}(\psi) + \sum_{|\gamma|=|\alpha|} \rho_{\gamma,\beta}(\psi) \big), \end{split}$$

using the inequality $|x|^{|\alpha|} \le 2^{|\alpha|} |x - y|^{|\alpha|} + 2^{|\alpha|} |y|^{|\alpha|}$ and (1.7.2).

⁶ In fact, any locally integrable function that is tempered at infinity.