Remark 2.5.8. Theorem 2.5.7 could have been stated in the following form: (2.5.9) is valid whenever both (2.5.7) and (2.5.8) hold at a point $x \in \mathcal{L}_f$.

Remark 2.5.9. Let K be as in Theorem 2.5.7. If K has compact support, then condition (2.5.7) holds for any locally integrable function f. Indeed, if K is supported in a ball B(0,M), then the integral in (2.5.7) is over the set $\theta \le |y| \le Mt$ and this set becomes empty when $t < \theta/M$, so the integral is zero for t sufficiently small.

We also observe that condition (2.5.7) can be derived from

$$\int_{\mathbf{R}^n} \frac{|f(z)|}{(1+|z|)^{n+\gamma}} dz < \infty. \tag{2.5.15}$$

Indeed, assuming (2.5.15), for any $x \in \mathbf{R}^n$, we obtain

$$\int_{\mathbf{R}^n} \frac{|f(x-y)|}{(1+|y|)^{n+\gamma}} dy = \int_{\mathbf{R}^n} \frac{|f(z)|}{(1+|x-z|)^{n+\gamma}} dz < \infty$$
 (2.5.16)

by splitting the z integral in (2.5.16) in the regions $|z| \le 2|x|$ and $|z| \ge 2|x|$; in the latter case $|z| \approx |z - x|$ so (2.5.15) applies. Also the integral over the region $|z| \le 2|x|$ is finite as f is locally integrable. Then for $|y| \ge \theta$ and t > 0 we have

$$|K_t(y)| \leq \frac{A}{t^n} \left| \frac{y}{t} \right|^{-n} \left| \frac{y}{t} \right|^{-\gamma} = A \frac{t^{\gamma}}{|y|^{n+\gamma}} \leq A t^{\gamma} \left(\frac{\theta+1}{\theta} \right)^{n+\gamma} \frac{1}{(1+|y|)^{n+\gamma}}.$$

Combining this estimate with (2.5.16), we deduce (2.5.7).

Example 2.5.10. Let A > 0, $0 < \gamma < n$ and $|K(x)| \le A|x|^{-n} \min(|x|^{\gamma}, |x|^{-\gamma})$ when $x \ne 0$. Then Theorem 2.5.7 applies in the following situations:

- (a) $f \in L^p(\mathbf{R}^n)$, 1 .
- (b) $|f(x)| < C(1+|x|)^{\tau}$ for $\tau < \gamma$.
- (c) $|f(x)| \le C(1+|x|)^{\tau}$ for $\tau < 1$ and K is the Poisson kernel P.
- (d) $|f(x)| \le Ce^{|x|^{\delta}}$ for $0 \le \delta < 2$ and $K(x) = e^{-\pi|x|^2}$.
- (e) $f \in L^1_{loc}(\mathbf{R}^n)$ and K has compact support.

Exercises

- **2.5.1.** Verify that in the five cases of Example 2.5.10, condition (2.5.7) is satisfied.
- **2.5.2.** Let $0 < \gamma < n$ and let x_0 be a Lebesgue point of a function f in $L^q(\mathbf{R}^n)$ where $\frac{n}{\gamma} < q \le \infty$. Prove that

$$\lim_{\varepsilon \to 0} \frac{1}{\varepsilon^n} \int_{\mathbf{R}^n} \frac{f(x) - f(x_0)}{\left(1 + \frac{|x - x_0|}{\varepsilon}\right)^{n + \gamma}} dx = 0.$$