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having used (2.5.13) with ¢ (r) = [5 F(p)dp and b = 8. Since we picked & < 1 it
follows that for any > 0
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s0 (2.5.14) is valid and thus (2.5.13) is justified. Next we use (2.5.10) and the fact
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where the second equality is based on (2.5.13) with ¢(r) = r". Then for 0 < ¢ < J,
combining the estimates derived for the two terms in (2.5.11), we deduce
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and this proves (2.5.9).
Finally we show that (2.5.8) is satisfied for almost all x € .Z%, and thus the
claimed almost convergence is valid. For every N € Z" we have
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Consequently the integral inside the square brackets is finite for almost all points x
in the ball B(0,N), so letting N — oo through the positive integers we obtain (2.5.8)
for almost all points x in R". ]

We note that there is no restriction in assuming that y < n as the size estimate on
K deteriorates as 7y decreases to 0.



