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having used (2.5.13) with f(r) =
R r

0 F(r)dr and b = d0. Since we picked d0 < 1 it
follows that for any t > 0
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so (2.5.14) is valid and thus (2.5.13) is justified. Next we use (2.5.10) and the fact
�L0 > 0 to obtain the estimate
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where the second equality is based on (2.5.13) with f(r) = rn. Then for 0 < t < d ,
combining the estimates derived for the two terms in (2.5.11), we deduce
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and this proves (2.5.9).
Finally we show that (2.5.8) is satisfied for almost all x 2 L f , and thus the

claimed almost convergence is valid. For every N 2 Z+ we have
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Consequently the integral inside the square brackets is finite for almost all points x
in the ball B(0,N), so letting N ! • through the positive integers we obtain (2.5.8)
for almost all points x in Rn. ⇤

We note that there is no restriction in assuming that g < n as the size estimate on
K deteriorates as g decreases to 0.


