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and we bound the absolute value of the last integral by
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We first estimate the second integral in (2.5.11). For ¢ > 0 we have
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We pick 6 > 0 such that the sum above is smaller than €/2 when 0 < ¢ < §, in view
of (2.5.7) and the appearance of ¢”. Note that 6 depends on f, xg, 1, ¥, and &.
To handle the first integral in (2.5.11) we use polar coordinates to write
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=— [ F(p)dp, (2.5.12)
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where

Fp)=p"" [ [f0o=pO)—f(x0)[d0,  p>0.

Since |f — f(xo)] is integrable over any ball centered at xo, it follows that F(p) is
defined for almost all p > 0. In view of (2.5.10), the expression in (2.5.12) is at most
42;:’1'1: when 0 < r < &. Now set L(r) = Ar " min(r",r~7) defined for r > 0. This
function is continuous on (0,0) and continuously differentiable on (0,1) U (1,00).
Also the integration-by-parts identity
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is valid for all # > 0, whenever ¢ is a differentiable function on (0, b) satisfying
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If b > 1 this can be seen by splitting the interval of integration in (0, 1) and (1,b)

and summing the outputs using that limg_,, L(6/7)¢(8) = 0. Since y < n we have
L' <0on (0,1)U(1,e0) and L' is undefined at 1. Now for any ¢ > 0 we write
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