Essentially the same proof yields the same more general result.

Theorem 2.5.6. Fix $1 \le p < \infty$. Let $\{T_t\}_{t>0}$ and T be linear operators defined on $L^p(\mathbf{R}^n)$ such that $T_t(\varphi)(x) \to T(\varphi)(x)$ as $t \to 0$ for all $\varphi \in \mathscr{C}_0^\infty(\mathbf{R}^n)$ and all $x \in \mathbf{R}^n$. Suppose that $T^{(*)}(f) = \sup_{t>0} |T_t(f)|$ is a bounded operator from $L^p(\mathbf{R}^n)$ to $L^{p,\infty}(\mathbf{R}^n)$. Then for all $f \in L^p(\mathbf{R}^n)$, $T_t(f) \to T(f)$ a.e. as $t \to 0$.

Proof. Adapt the proof of Theorem 2.5.5 replacing $K_t * f$ by $T_t(f)$ and \mathfrak{M} by $T^{(*)}$. \square

Theorem 2.5.5 does not cover the case of $p = \infty$, in view of the lack of a nice dense subspace of L^{∞} . A different proof of Theorem 2.5.5 can be given that not only covers the case $p = \infty$, but also allows the function f to have moderate growth at infinity, or even be locally integrable, if K has compact support. But the most important ingredient of this proof is that it relates the set of almost everywhere convergence to the Lebesgue set \mathcal{L}_f of f.

Theorem 2.5.7. Let $K \in L^1(\mathbf{R}^n)$ satisfy $|K(x)| \le A|x|^{-n} \min(|x|^{\gamma}, |x|^{-\gamma})$ when $x \ne 0$, where A > 0 and $0 < \gamma < n$. Let $f \in L^1_{\mathrm{loc}}(\mathbf{R}^n)$. Suppose that

$$\lim_{t \to 0^+} \int_{|y| > \theta} |f(x - y)| |K_t(y)| \, dy = 0 \qquad \text{for all } \theta > 0 \text{ and } x \in \mathbf{R}^n.$$
 (2.5.7)

Then for every $x \in \mathcal{L}_f$ *for which*

$$\int_{|y| \le 1} |f(x - y)| \, |y|^{-n + \gamma} dy < \infty \tag{2.5.8}$$

we have

$$\lim_{t \to 0^+} (K_t * f)(x) = cf(x), \tag{2.5.9}$$

where $c = \int_{\mathbf{R}^n} K(y) dy$. Consequently, $K_t * f \to cf$ a.e. as $t \to 0^+$.

Proof. We fix f and K as in the statement of the theorem and $x_0 \in \mathcal{L}_f$ such that (2.5.8) is satisfied. We begin with the observation that (2.5.7) with $\theta = 1$ and (2.5.8), combined with the fact that $|K_t(y)| \le t^{-n} |y/t|^{-n+\gamma}$, yield

$$(|f|*|K_t|)(x_0) < \infty$$
 for t sufficiently small depending on x_0 .

We will prove (2.5.9) for $x = x_0$. Let $\varepsilon > 0$ be given. As $x_0 \in \mathcal{L}_f$ there is a $\delta_0 > 0$ (which we pick to satisfy $\delta_0 < 1$) such that

$$0 < r \le \delta_0 \implies \frac{1}{\nu_n r^n} \int_{|y| < r} |f(x_0 - y) - f(x_0)| \, dy < \frac{\gamma}{4\omega_{n-1} A} \varepsilon. \tag{2.5.10}$$

Here $v_n = |B(0,1)|$ and $\omega_{n-1} = |\mathbf{S}^{n-1}|$. Since $\int_{\mathbf{R}^n} K_t(y) dy = c$ for any t > 0, we write

$$(K_t * f)(x_0) - cf(x_0) = \int_{\mathbf{R}^n} K_t(y) (f(x_0 - y) - f(x_0)) dy,$$