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Proof. Use Theorem 2.5.1 with K(x) = (14 |x|) ™" 7. O

The conditions on K in Theorem 2.5.1 are weakened in Exercise 2.5.3. Another
proof of Theorem 2.5.1 can be given which explicitly relates the value of constant
Cnyin(2.5.1) to K.

Proposition 2.5.3. Let K(x) be a nonnegative integrable function on R", which is
radial and decreasing® on [0,) as a function of |x|. Then for f € L} .(R") and any
x € R" we have
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Proof. For a simple function of the form
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But an arbitrary nonnegative radially decreasing function on R” can be pointwise
approximated by an increasing sequence of functions L¥ of the form (2.5.3). We then
apply (2.5.4) to each L¥ and take the limit as k — oo applying the LMCT. Finally,
taking the supremum over all ¢ > 0, we deduce (2.5.2). O

The following is an application of Theorem 2.5.1.

Proposition 2.5.4. The space
{@ € Z(R"): ¢ €6y and ¢ vanishes in a neighborhood of 0}
is dense in LP (R") for | < p < co.

Proof. Start with a %> function @ which is equal to 1 on the unit ball and vanishes
outside the ball B(0,2). Consider the family 1 — (& /&) which converges pointwise
to 1 for & # 0 and the family ®(¢&) — 1 as € — 0. Then (1- 5(6/8))5(85)
converges pointwise to Ygn\ oy (&) for all & € R" and vanishes for |§| > 2 /€ and for
|E| < e.Leth e .(R"). Applying the LDCT we obtain
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for any x € R". In other words the sequence he = hx @p — h* Py /. * Pg converges

pointwise everywhere to . and its Fourier transform has compact support and van-

ishes in a neighborhood of the origin. Moreover, for some constant Cy we have

3 Such a function is said to be radially decreasing.



