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Next we define convergence on the space of Schwartz functions

Definition 1.8.5. Let { f j}•
j=1 be a sequence of Schwartz functions. We say that f j

converges to a Schwartz function f in the Schwartz topology, or simply in S (Rn),
if ra,b ( f j � f ) ! 0 as j ! • for all multi-indices a , b . We then write f j ! f in
S .

In particular, if f j ! f in S as j ! •, then for all multi-indices b , the sequence
∂ b f j �∂ b f tends to zero uniformly on Rn.

Example 1.8.6. The sequence of Schwartz functions f j(x) = e�1/xe� jxc(0,•) on the
real line converges to zero in S (R) as j !•. To verify this assertion, first we notice
that for each m 2 Z+ there is a polynomial Pm of degree 2m such that
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a fact that will be tacitly used in the sequel. Now for j � 1 and for nonnegative
integers K,L we estimate
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The first supremum tends to zero as j ! • since e� jx  e� j/2e�x/2 when j,x � 1.
In the second supremum notice that the lth derivative of e�1/x on [0,1) is bounded
by CMxM for any M 2 Z+. Choosing M = L+1 we bound the second term by
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which also tends to zero as j ! •.

Theorem 1.8.7. The space C •
0 (Rn) is dense in S (Rn) in the Schwartz topology.

Precisely, fix a smooth function j with values in [0,1] supported in B(0,2) and
equal to 1 on the unit ball B(0,1). Then for any f 2 S (Rn), the sequence f j(x) =
f (x)j(x/ j) converges to f (x) in the Schwartz topology as j ! •.

Proof. For fixed multi-indices a and b we show that ra,b ( f j(·/ j)� f ) tends to
zero as j ! •. By Leibniz’s rule we estimate this Schwartz seminorm by
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As (∂ b�g j)(x/ j) remains bounded for all j, the first term tends to zero as j ! •,
since |b |� |g|� 1. As j(x/ j)�1 = 0 |x|< j, the second supremum equals


