1.8 Schwartz Functions 43

Next we define convergence on the space of Schwartz functions

Definition 1.8.5. Let $\{f_j\}_{j=1}^{\infty}$ be a sequence of Schwartz functions. We say that f_j converges to a Schwartz function *f in the Schwartz topology*, or simply *in* $\mathscr{S}(\mathbf{R}^n)$, if $\rho_{\alpha,\beta}(f_j - f) \to 0$ as $j \to \infty$ for all multi-indices α, β . We then write $f_j \to f$ in *S* .

In particular, if $f_j \to f$ in $\mathscr S$ as $j \to \infty$, then for all multi-indices β , the sequence $\partial^{\beta} f_i - \partial^{\beta} f$ tends to zero uniformly on \mathbb{R}^n .

Example 1.8.6. The sequence of Schwartz functions $f_i(x) = e^{-1/x}e^{-jx}\chi_{(0,\infty)}$ on the real line converges to zero in $\mathscr{S}(\mathbf{R})$ as $j \to \infty$. To verify this assertion, first we notice that for each $m \in \mathbb{Z}^+$ there is a polynomial P_m of degree $2m$ such that

$$
\frac{d^m}{dx^m}(e^{-\frac{1}{x}})=P_m(\frac{1}{x})e^{-\frac{1}{x}},
$$

a fact that will be tacitly used in the sequel. Now for $j \geq 1$ and for nonnegative integers *K,L* we estimate

$$
\rho_{K,L}(f_j) \leq \sum_{l=0}^{L} {L \choose l} j^{L-l} \sup_{x \geq 1} \left| x^{K} e^{-jx} \frac{d^{l}}{dx^{l}} (e^{-\frac{1}{x}}) \right| + \sum_{l=0}^{L} {L \choose l} j^{L-l} \sup_{0 \leq x < 1} e^{-jx} \left| \frac{d^{l}}{dx^{l}} (e^{-\frac{1}{x}}) \right|.
$$

The first supremum tends to zero as $j \rightarrow \infty$ since $e^{-jx} \leq e^{-j/2}e^{-x/2}$ when $j, x \geq 1$. In the second supremum notice that the *l*th derivative of $e^{-1/x}$ on [0, 1) is bounded by $C_M x^M$ for any $M \in \mathbb{Z}^+$. Choosing $M = L + 1$ we bound the second term by

$$
C'_L j^L e^{-jx} x^{L+1} \le \frac{C'_L}{j} \sup_{t>0} (t^{L+1} e^{-t}),
$$

which also tends to zero as $j \rightarrow \infty$.

Theorem 1.8.7. *The space* $\mathscr{C}_0^{\infty}(\mathbb{R}^n)$ *is dense in* $\mathscr{S}(\mathbb{R}^n)$ *in the Schwartz topology. Precisely, fix a smooth function* φ *with values in* [0,1] *supported in B*(0,2) *and equal to* 1 *on the unit ball* $B(0,1)$ *. Then for any* $f \in \mathcal{S}(\mathbb{R}^n)$ *, the sequence* $f_i(x)$ = $f(x)\varphi(x|j)$ *converges to* $f(x)$ *in the Schwartz topology as* $j \rightarrow \infty$ *.*

Proof. For fixed multi-indices α and β we show that $\rho_{\alpha,\beta}(f\varphi(\cdot/j) - f)$ tends to zero as $j \rightarrow \infty$. By Leibniz's rule we estimate this Schwartz seminorm by

$$
\sum_{\substack{\gamma \leq \beta \\ \gamma \neq \beta}} {\beta \choose \gamma} \frac{1}{j^{|\beta|-|\gamma|}} \sup_{x \in \mathbf{R}^n} \left| x^\alpha (\partial^\gamma f)(x) (\partial^{\beta-\gamma} \varphi) \Big(\frac{x}{j} \Big) \right| + \sup_{x \in \mathbf{R}^n} \left| x^\alpha (\partial^\beta f)(x) \Big(\varphi \Big(\frac{x}{j} \Big) - 1 \Big) \right|.
$$

As $(\partial^{\beta-\gamma}\varphi)(x/j)$ remains bounded for all *j*, the first term tends to zero as *j* $\rightarrow \infty$, since $|\beta| - |\gamma| \ge 1$. As $\varphi(x/j) - 1 = 0 |x| < j$, the second supremum equals