1.8 Schwartz Functions

Next we define convergence on the space of Schwartz functions

Definition 1.8.5. Let $\{f_j\}_{j=1}^{\infty}$ be a sequence of Schwartz functions. We say that f_j converges to a Schwartz function f in the Schwartz topology, or simply in $\mathscr{S}(\mathbb{R}^n)$, if $\rho_{\alpha,\beta}(f_j - f) \to 0$ as $j \to \infty$ for all multi-indices α , β . We then write $f_j \to f$ in \mathscr{S} .

In particular, if $f_j \to f$ in \mathscr{S} as $j \to \infty$, then for all multi-indices β , the sequence $\partial^{\beta} f_j - \partial^{\beta} f$ tends to zero uniformly on \mathbf{R}^n .

Example 1.8.6. The sequence of Schwartz functions $f_j(x) = e^{-1/x}e^{-jx}\chi_{(0,\infty)}$ on the real line converges to zero in $\mathscr{S}(\mathbf{R})$ as $j \to \infty$. To verify this assertion, first we notice that for each $m \in \mathbf{Z}^+$ there is a polynomial P_m of degree 2m such that

$$\frac{d^m}{dx^m}(e^{-\frac{1}{x}})=P_m(\frac{1}{x})e^{-\frac{1}{x}},$$

a fact that will be tacitly used in the sequel. Now for $j \ge 1$ and for nonnegative integers K, L we estimate

$$\rho_{K,L}(f_j) \leq \sum_{l=0}^{L} {L \choose l} j^{L-l} \sup_{x \ge 1} \left| x^K e^{-jx} \frac{d^l}{dx^l} (e^{-\frac{1}{x}}) \right| + \sum_{l=0}^{L} {L \choose l} j^{L-l} \sup_{0 \le x < 1} e^{-jx} \left| \frac{d^l}{dx^l} (e^{-\frac{1}{x}}) \right|.$$

The first supremum tends to zero as $j \to \infty$ since $e^{-jx} \le e^{-j/2}e^{-x/2}$ when $j, x \ge 1$. In the second supremum notice that the *l*th derivative of $e^{-1/x}$ on [0,1) is bounded by $C_M x^M$ for any $M \in \mathbb{Z}^+$. Choosing M = L + 1 we bound the second term by

$$C'_L j^L e^{-jx} x^{L+1} \le \frac{C'_L}{j} \sup_{t>0} (t^{L+1} e^{-t}),$$

which also tends to zero as $j \rightarrow \infty$.

Theorem 1.8.7. The space $\mathscr{C}_0^{\infty}(\mathbf{R}^n)$ is dense in $\mathscr{S}(\mathbf{R}^n)$ in the Schwartz topology. Precisely, fix a smooth function φ with values in [0,1] supported in B(0,2) and equal to 1 on the unit ball B(0,1). Then for any $f \in \mathscr{S}(\mathbf{R}^n)$, the sequence $f_j(x) = f(x)\varphi(x/j)$ converges to f(x) in the Schwartz topology as $j \to \infty$.

Proof. For fixed multi-indices α and β we show that $\rho_{\alpha,\beta}(f\varphi(\cdot/j) - f)$ tends to zero as $j \to \infty$. By Leibniz's rule we estimate this Schwartz seminorm by

$$\sum_{\substack{\gamma \leq \beta \\ \gamma \neq \beta}} \binom{\beta}{\gamma} \frac{1}{j^{|\beta| - |\gamma|}} \sup_{x \in \mathbf{R}^n} \left| x^{\alpha} (\partial^{\gamma} f)(x) (\partial^{\beta - \gamma} \varphi) \left(\frac{x}{j} \right) \right| + \sup_{x \in \mathbf{R}^n} \left| x^{\alpha} (\partial^{\beta} f)(x) \left(\varphi \left(\frac{x}{j} \right) - 1 \right) \right|.$$

As $(\partial^{\beta-\gamma}\varphi)(x/j)$ remains bounded for all *j*, the first term tends to zero as $j \to \infty$, since $|\beta| - |\gamma| \ge 1$. As $\varphi(x/j) - 1 = 0 |x| < j$, the second supremum equals