1.8 Schwartz Functions

For a pair of multi-indices α and β and a function $f \in \mathcal{C}^{\infty}(\mathbb{R}^n)$ we define the $\rho_{\alpha,\beta}$ *Schwartz seminorm*⁷ of *f* by

$$
\rho_{\alpha,\beta}(f) = \sup_{x \in \mathbf{R}^n} |x^{\alpha} \partial^{\beta} f(x)|.
$$

Naturally, this quantity could be infinite for certain smooth functions.

Definition 1.8.1. A \mathscr{C}^{∞} complex-valued function f on \mathbb{R}^{n} is called a Schwartz function if for all multi-indices α and β we have $\rho_{\alpha\beta}(f) < \infty$. The space of all Schwartz functions on \mathbf{R}^n is denoted by $\mathscr{S}(\mathbf{R}^n)$.

Thus a \mathscr{C}^{∞} function is called Schwartz if and only if for every multi-index β and every $N \in \mathbb{Z}^+$ there is a constant $C_{N,\beta}$ such that for all $x \in \mathbb{R}^n$ we have

$$
|\partial^{\beta} f(x)| \leq \frac{C_{N,\beta}}{(1+|x|)^N}.
$$

Obviously, every smooth function with compact support is a Schwartz function, i.e., $\mathscr{C}_0^{\infty}(\mathbf{R}^n)$ is contained in $\mathscr{S}(\mathbf{R}^n)$.

Example 1.8.2. The function $e^{-|x|^2}$ lies in $\mathscr{S}(\mathbf{R}^n)$ but $e^{-|x|}$ does not, since the latter fails to be differentiable at the origin. The \mathcal{C}^{∞} function $g(x) = (1 + |x|^2)^{-10}$ is not in $\mathscr{S}(\mathbf{R}^n)$, as $\rho_{\alpha_1,0}(g) = \infty$ for $\alpha_1 = (21,0,\ldots,0)$ and $0 = (0,\ldots,0)$.

Example 1.8.3. The function $e^{-1/x}e^{-x}\chi_{(0,\infty)}$ lies in $\mathscr{S}(\mathbf{R})$ as $e^{-1/x}\chi_{(0,\infty)}$ is infinitely differentiable at the origin with vanishing derivatives of all orders.

Proposition 1.8.4. *Let f, g be in* $\mathscr{S}(\mathbb{R}^n)$ *and* $c \in \mathbb{C}$ *. Then* $f + g$ *, cf, fg, and* $f * g$ *lie in* $\mathscr{S}(\mathbf{R}^n)$.

Proof. The only nontrivial assertion is that $\partial^{\beta}(f*g)$ has rapid decay at infinity. For each $N > 0$ there are constants $C_{N,\beta}$ and $C'_{N+n+1,0}$ such that

$$
\left| \int_{\mathbf{R}^n} (\partial^{\beta} f)(x - y) g(y) \, dy \right| \le \int_{\mathbf{R}^n} \frac{C_{N,\beta}}{(1 + |x - y|)^N} \frac{C'_{N+n+1,0}}{(1 + |y|)^{N+n+1}} \, dy. \tag{1.8.1}
$$

Inserting the simple estimate $(1 + |x - y|)^{-N} \le (1 + |y|)^{N} (1 + |x|)^{-N}$ in (1.8.1) we deduce that

$$
|(\partial^{\beta} f * g)(x)| \leq C_{N,\beta,n} (1+|x|)^{-N} \int_{\mathbf{R}^n} (1+|y|)^{-n-1} dy = C(N,\beta,n) (1+|x|)^{-N},
$$

and this proves the rapid decay of $\partial^{\beta} f * g$ at infinity. \Box

 7 The Schwartz seminorm is in fact a norm (see Exercise 1.8.2).