38 1 Introductory Material

$$
C_{n,k}(1+|x|)^k \le \sum_{|\beta| \le k} |x^{\beta}| \le D_{n,k}(1+|x|)^k. \tag{1.7.3}
$$

This follows from (1.7.2) for $|x| > 1$, while for $|x| < 1$ both terms in (1.7.3) are at least 1 as $|x^{(0,...,0)}| = 1$. Here again $0 < C_{n,k} < D_{n,k} < \infty$.

We end the preliminaries by noting the validity of the one-dimensional *Leibniz rule*

$$
\frac{d^{m}}{dt^{m}}(fg) = \sum_{k=0}^{m} {m \choose k} \frac{d^{k}f}{dt^{k}} \frac{d^{m-k}g}{dt^{m-k}},
$$
\n(1.7.4)

for all \mathcal{C}^m functions f, g on **R**, and its multidimensional analog

$$
\partial^{\alpha}(fg) = \sum_{\beta \le \alpha} {\alpha_1 \choose \beta_1} \cdots {\alpha_n \choose \beta_n} (\partial^{\beta} f) (\partial^{\alpha - \beta} g), \qquad (1.7.5)
$$

for f, g in $\mathcal{C}^{|\alpha|}(\mathbf{R}^n)$ for some multi-index α , where the notation $\beta \leq \alpha$ in (1.7.5) means that β ranges over all multi-indices satisfying $0 \leq \beta_j \leq \alpha_j$ for all $1 \leq j \leq n$. We observe that identity (1.7.5) is easily deduced by repeated application of (1.7.4), which in turn is obtained by induction.

Theorem 1.7.1. Let $m \in \mathbf{Z}^+$, $1 \leq q < \infty$, $g \in L^q(\mathbf{R}^n)$, and $\varphi \in \mathscr{C}^m(\mathbf{R}^n) \cap L^{q'}(\mathbf{R}^n)$. *Moreover, assume that* $\partial^{\alpha} \varphi$ *lies in* $L^{q'}(\mathbf{R}^n)$ *for all multi-indices* α *with* $|\alpha| \leq m$. *Then* $\varphi * g$ *lies in* $\mathcal{C}^m(\mathbf{R}^n)$ *and* $\partial^\alpha(\varphi * g) = (\partial^\alpha \varphi) * g \in L^\infty$ *for all* $|\alpha| \leq m$.

Proof. Let e_j be the unit vector $(0, \ldots, 1, \ldots, 0)$ with 1 in the *j*th entry and zeros in all the other entries. If $q > 1$ we initially make the additional assumption that *g* has compact support. If $q = 1$ this initial assumption is not necessary.

We fix an arbitrary $x_0 \in \mathbb{R}^n$ and we show that $\varphi * g$ has a *j*th partial derivative at x_0 , i.e., prove the case $\alpha = e_j$. Using the fundamental theorem of calculus write

$$
\Lambda(g,\varphi)(t,x_0) = \frac{(g*\varphi)(x_0 + te_j) - (g*\varphi)(x_0)}{t} - g*\partial_j\varphi(x_0)
$$

=
$$
\int_0^1 \int_{\mathbf{R}^n} \left[\left(\partial_j\varphi(y+ tse_j) - \partial_j\varphi(y) \right) g(x_0 - y) \right] dy ds.
$$
 (1.7.6)

We note that the integrand in (1.7.6) tends pointwise to zero as $t \rightarrow 0$ by the fact that *φ* ∈ *C*¹; moreover it is bounded by $2||\partial_j \varphi||_{L^{\infty}(B(x_0,2) - \text{supp}g)}|g(x_0 - \cdot)|$ which lies in $L^1(\mathbf{R}^n \times [0,1], dyds)$. The last assertion follows by the hypotheses of the theorem if $q = 1$ and by the additional assumption that it lies in L^q and is supported in a compact set, on which $\partial_i \varphi$ is certainly bounded, if $q > 1$. The LDCT then yields that $\Lambda(g, \varphi)(t, x_0) \to 0$ as $t \to 0$ for any fixed $x_0 \in \mathbb{R}^n$ when *g* has compact support.

We now remove the assumption that *g* has compact support if $q > 1$. Given $q \in L^q$, set $g_M(x) = g(x)\chi_{|x| \le M}$ for $M > 0$. Given a point x_0 and $\varepsilon > 0$ we find an M such that $||g - g_M||_{L^q} < \varepsilon$ (as $q < \infty$) and we pick a $\delta > 0$ such that for $|t| < \delta$ we have $|A(g_M, \varphi)(t, x_0)| < \varepsilon$. Additionally, by Hölder's inequality we obtain

$$
\left|\Lambda(g-g_M,\boldsymbol{\varphi})(t,x_0)\right|\leq\int_0^1\left\|g-g_M\right\|_{L^q}\left\|\partial_j\boldsymbol{\varphi}(\cdot+tse_j)-\partial_j\boldsymbol{\varphi}\right\|_{L^{q'}}ds\leq2\epsilon\left\|\partial_j\boldsymbol{\varphi}\right\|_{L^{q'}}.
$$