1.6.5. (a) Let $f \in L^1(\mathbb{R}^n)$ and $g \in L^{\infty}(\mathbb{R}^n)$ and suppose that g has compact support. Prove that $(f * g)(x) \to 0$ as $|x| \to \infty$.

(b) Provide examples of $f \in L^1(\mathbf{R})$ compactly supported and $g \in L^{\infty}(\mathbf{R})$ non-compactly supported, such that |f * g| is a constant; hence the assertion in (a) fails.

1.6.6. Let *K* be a positive integrable function on \mathbb{R}^n and let $1 \le p \le \infty$. Prove that the norm of the operator T(f) = f * K from $L^p(\mathbb{R}^n)$ to itself is equal to $||K||_{L^1}$. [*Hint:* Clearly, $||T||_{L^p \to L^p} \le ||K||_{L^1}$. Conversely, fix $0 < \varepsilon < 1$ and let *N* be a positive integer. Let $\chi_N = \chi_{B(0,N)}$ and for any R > 0 let $K_R = K\chi_{B(0,R)}$, where B(x,R) is the ball of radius *R* centered at *x*. Observe that for $|x| \le (1 - \varepsilon)N$, we have $B(0,N\varepsilon) \subseteq$

B(x,N); thus $\int_{\mathbf{R}^n} \chi_N(x-y) K_{N\varepsilon}(y) dy = \int_{\mathbf{R}^n} K_{N\varepsilon}(y) dy = \|K_{N\varepsilon}\|_{L^1}$. Then for $p < \infty$

$$\frac{\left\|K * \boldsymbol{\chi}_{N}\right\|_{L^{p}}^{p}}{\left\|\boldsymbol{\chi}_{N}\right\|_{L^{p}}^{p}} \geq \frac{\left\|K_{N\varepsilon} * \boldsymbol{\chi}_{N}\right\|_{L^{p}(B(0,(1-\varepsilon)N)}^{p}}{\left\|\boldsymbol{\chi}_{N}\right\|_{L^{p}}^{p}} \geq \left\|K_{N\varepsilon}\right\|_{L^{1}}^{p}(1-\varepsilon)^{n}.$$

Let $N \to \infty$ first and then $\varepsilon \to 0$. The case $p = \infty$ is straightforward.]

1.6.7. Let 1 . (a) Let*K* $be an integrable function on <math>\mathbb{R}^n$. Show that

$$\|f * K\|_{L^{p,\infty}} \le \frac{p}{p-1} \|K\|_{L^1} \|f\|_{L^{p,\gamma}}$$

for all f in $L^{p,\infty}$. Thus the operator $f \mapsto f * K$ maps $L^{p,\infty}(\mathbf{R}^n)$ to $L^{p,\infty}(\mathbf{R}^n)$. (b) Let $K \in L^{p,\infty}(\mathbf{R}^n)$. Prove that the operator $f \mapsto f * K$ maps $L^1(\mathbf{R}^n)$ to $L^{p,\infty}(\mathbf{R}^n)$ with norm at most $\frac{p}{p-1} \|K\|_{L^{p,\infty}}$.

[*Hint:* Part (a): Use Theorem 1.2.10. Part (b): Reverse the roles of f and K in (a).]

1.6.8. Let *K* be a nonnegative function in $L^1_{loc}(\mathbf{R}^n)$ and let 0 . Suppose that there is a positive constant*C*such that the inequality

$$\left\|f \ast K\right\|_{L^{p,\infty}} \le C \left\|f\right\|_{L^{p}}$$

holds for all nonnegative functions f in $L^{p,\infty}$. Prove that $K \in L^1(\mathbb{R}^n)$. Obtain the same conclusion when $||f||_{L^p}$ is replaced by $||f||_{L^{p,\infty}}$ in the hypothesis. [*Hint:* Use that

$$\chi_{B(0,2R)} * K \ge \Big(\int_{B(0,R)} K(x) \, dx\Big) \chi_{B(0,R)}$$

and let $R \to \infty$. Here $B(0, r) = \{x : |x| < r\}$.]

1.6.9. Let Ω be a measurable subset of \mathbb{R}^n and let $K \ge 0$ be an even measurable function on \mathbb{R}^n . Let $T_K(f) = f * K$ for f measurable. (a) Show that for $1 \le p \le \infty$ we have

$$\|T_K\|_{L^p(\Omega)\to L^p(\Omega)} \le \|F\|_{L^\infty(\Omega)}, \text{ where } F(x) = \int_{\Omega} K(x-y) \, dy.$$