1.6 Convolution

Proof. Let us assume $1 \le p < \infty$. The case $p = \infty$ can be handled by reversing the roles of f and g. Given $\varepsilon > 0$, let φ be a continuous function with compact support such that $||f - \varphi||_{L^p} < \varepsilon$. Let us suppose that the support of φ is contained in B(0, M). Then φ is uniformly continuous, so there is $\delta > 0$ such that

$$x \in \mathbf{R}^n, |h| < \delta \implies |\varphi(x+h) - \varphi(x)| < \varepsilon |B(0,M+1)|^{-\frac{1}{p}}.$$

For $|h| < \min(\delta, 1)$ Hölder's inequality yields

$$\begin{split} \left| (\varphi * g)(x+h) - (\varphi * g)(x) \right| &\leq \left[\int_{|y| \leq M+1} |\varphi(y+h) - \varphi(y)|^p \, dy \right]^{\frac{1}{p}} \|g\|_{L^{p'}} \\ &\leq (\varepsilon |B(0, M+1)|^{-\frac{1}{p}}) |B(0, M+1)|^{\frac{1}{p}} \|g\|_{L^{p'}}. \end{split}$$

Then for $|h| < \min(\delta, 1)$ we have

$$\begin{aligned} \left| (f * g)(x+h) - (f * g)(x) \right| \\ &\leq \left| (\varphi * g)(x+h) - (\varphi * g)(x) \right| + \left| ((f - \varphi) * g)(x+h) - ((f - \varphi) * g)(x) \right| \\ &\leq \varepsilon \|g\|_{L^{p'}} + 2\|f - \varphi\|_{L^p} \|g\|_{L^{p'}} \\ &\leq 3\varepsilon \|g\|_{L^{p'}}. \end{aligned}$$

This proves the uniform continuity of f * g on \mathbb{R}^n . Its boundedness is a consequence of Hölder's inequality.

Exercises

1.6.1. Show that the support of the convolution of two functions is contained in the in the closure of the algebraic sum⁶ of the supports of the two functions.

1.6.2. Let f, g, h be nonnegative measurable functions on \mathbb{R}^n and let $1 \le p < \infty$. Prove that

$$((f*g)^p*h)^{\frac{1}{p}} \le \min[f*(g^p*h)^{\frac{1}{p}},g*(f^p*h)^{\frac{1}{p}}].$$

[*Hint:* Use the Minkowski integral inequality.]

1.6.3. Let $\alpha \in \mathbf{R}^+$ and $\beta \in \mathbf{R}$. Consider the functions $g(t) = e^{-\alpha t} \chi_{t>0}$ and $h(t) = e^{i\beta t}$ defined on the real line. Show that for any positive integer *m* we have

$$\underbrace{g*\cdots*g}_{m \text{ times}}*h=(\alpha+i\beta)^{-m}h.$$

1.6.4. Consider the Gaussian function $G(x) = e^{-\pi |x|^2}$ on \mathbb{R}^n . Show that $(G * G)(x) = G(x/\sqrt{2})/(\sqrt{2})^n$. [*Hint:* Change variables $y = y' + \frac{x}{2}$.]

⁶ The algebraic sum of the sets *A* and *B* is the set $A + B = \{a + b : a \in A, b \in B\}$.