6.1 Basic Properties of Functions of Bounded Mean Oscillation

$$f_N(x) = \begin{cases} N & \text{if } f(x) > N, \\ f(x) & \text{if } |f(x)| \le N, \\ -N & \text{if } f(x) < -N \end{cases}$$

satisfies $||f_N||_{BMO} \leq \frac{9}{4} ||f||_{BMO}$. [*Hint*: Write $f_N = \max(-N, \min(f, N))$.]

6.1.3. Let $1 \le p \le \infty$. Find functions F in $L^p(\mathbb{R}^n)$ and $G \in BMO(\mathbb{R}^n)$ such that FG does not lie in $L^p(\mathbb{R}^n)$.

6.1.4. Show that for all *f* in *BMO*_{balls}(\mathbf{R}^n) and all r > 0 we have

$$\left|f_{rB} - f_B\right| \le 2^n \left(1 + \log_2 \max(r, \frac{1}{r})\right) \left\|f\right\|_{BMO_{\text{balls}}}$$

6.1.5. Let a > 0 and let $f \in BMO(\mathbb{R}^n)$. Let *B* and *B'* be balls in \mathbb{R}^n both of radius *r* whose centers have distance *ar* (these balls could be overlapping). Prove that

$$|f_B - f_{B'}| \le 2^{n+1} \log_2(a+2) ||f||_{BMO_{\text{balls}}}$$

Also show that $\sup_{B,B' \text{ balls with } |B|=|B'|} |f_B - f_{B'}|/||f||_{BMO}$ may be unbounded. [*Hint:* Pick $m \in \mathbb{Z}$ such that $2^m \le a + 2 < 2^{m+1}$ and let x_0 be the midpoint of the line segment joining the centers of *B* and *B'*. Consider the ball $B'' = B(x_0, 2^m r)$ and estimate $|f_B - f_{B''}|$ and $|f_{B'} - f_{B''}|$ via telescoping sums, using (6.1.10).]

6.1.6. Let $f \in BMO(\mathbb{R}^n)$ and $N \in \mathbb{Z}^+$. Verify the following assertions: (a) For any two cubes Q and Q' of side length 1 contained in $[0, 2^N]^n$ we have

$$|f_Q - f_{Q'}| \le N2^{n+1} ||f||_{BMO}$$

(b) Let $-\infty < l < L < \infty$. Conclude that for any two cubes Q, Q' of side length 2^l both contained in a cube of side length 2^L the following estimate is valid:

$$|f_Q - f_{Q'}| \le (L - l + 1)2^{n+1} ||f||_{BMO}$$

[*Hint:* Part (a). For any interval *I* of length 1 contained in $[0, 2^N]$ there is a sequence of intervals $I = I_0 \subset I_1 \subset \cdots \subset I_{N-1} \subset [0, 2^N]$ with $|I_j| = 2^j$. Then use (6.1.10).]

6.1.7. Let Φ be a concave strictly increasing function from $[0,\infty)$ to $[0,\infty)$ that satisfies $\Phi(0) = 0$, $\lim_{t\to\infty} \Phi(t) = \infty$, and $\Phi(t+s) \le \Phi(t) + \Phi(s)$ for all $t, s \ge 0$. Prove that if $f \in BMO$, then $\Phi(|f|)$ lies also in BMO and

$$\left\|\boldsymbol{\Phi}(|f|)\right\|_{BMO} \leq 2\boldsymbol{\Phi}(\|f\|_{BMO})$$

Let $0 . Three important examples of such functions <math>\Phi$ are

$$\Phi(t) = t^p, \quad \Phi(t) = \log(t+1), \quad \Phi(t) = [\log(t+1)]^p.$$