Example 6.1.5. We show that the unbounded function $\log |x|$ lies in $BMO(\mathbb{R}^n)$. Hence $L^{\infty}(\mathbb{R}^n)$ is a proper subspace of $BMO(\mathbb{R}^n)$.

Indeed, we will show that $\log |x|$ lies in $BMO_{\text{balls}}(\mathbf{R}^n)$. Let $B(x_0, R)$ be a ball. If $|x_0| > 2R$, then for $|x - x_0| \le R$ we have $\frac{1}{2}|x_0| \le |x| \le \frac{3}{2}|x_0|$, hence

$$\frac{1}{v_n R^n} \int_{|x-x_0| \le R} |\log |x| - \log |x_0| | dx = \frac{1}{v_n R^n} \int_{|x-x_0| \le R} |\log \frac{|x|}{|x_0|} | dx
\le \max \left(\log \frac{3}{2}, \left| \log \frac{1}{2} \right| \right) = \log 2.$$

Also, if $|x_0| \leq 2R$, then

$$\frac{1}{\nu_{n}R^{n}} \int_{|x-x_{0}| \leq R} \left| \log|x| - \log R \right| dx = \frac{1}{\nu_{n}R^{n}} \int_{|x-x_{0}| \leq R} \left| \log \frac{|x|}{R} \right| dx$$

$$\leq \frac{1}{\nu_{n}R^{n}} \int_{|x| \leq 3R} \left| \log \frac{|x|}{R} \right| dx$$

$$= \frac{1}{\nu_{n}} \int_{|x| < 3} \left| \log|x| \right| dx = \frac{3^{n} (n \log 3 - 1) + 2}{n}.$$

We apply Proposition 6.1.3 with $C_{B(x_0,R)}$ being $\log R$ or $\log |x_0|$ to deduce that $\log |x|$ lies in $BMO_{\text{balls}}(\mathbf{R}^n)$ and hence in $BMO(\mathbf{R}^n)$.

The function $\log |x|$ turns out to be a typical element of *BMO*, but we will make this statement a bit more precise in the next section. It is interesting, however, to notice that *BMO* does not remain invariant under abrupt cutoffs.

Example 6.1.6. The function $h(x) = \chi_{x>0} \log \frac{1}{x}$ is not in $BMO(\mathbf{R})$. Indeed, the problem is at the origin. Consider the intervals $(-\varepsilon, \varepsilon)$, where $0 < \varepsilon < \frac{1}{2}$. We have that

$$h_{(-\varepsilon,\varepsilon)} = \frac{1}{2\varepsilon} \int_{-\varepsilon}^{+\varepsilon} h(x) \, dx = \frac{1}{2\varepsilon} \int_{0}^{\varepsilon} \log \frac{1}{x} \, dx = \frac{1 + \log \frac{1}{\varepsilon}}{2}.$$

But then

$$\frac{1}{2\varepsilon} \int_{-\varepsilon}^{+\varepsilon} \left| h(x) - h_{(-\varepsilon,\varepsilon)} \right| dx \ge \frac{1}{2\varepsilon} \int_{-\varepsilon}^{0} \left| h_{(-\varepsilon,\varepsilon)} \right| dx = \frac{1 + \log \frac{1}{\varepsilon}}{4},$$

and the latter is clearly unbounded as $\varepsilon \to 0$. This discussion also reveals examples of two *BMO* functions whose product is not in *BMO* $(\chi_{(0,\infty)}$ and $\log \frac{1}{|x|})$.

Proposition 6.1.7. Under the identification of functions whose difference is a constant a.e., BMO is a complete normed linear space, i.e., a Banach space.

Proof. Let $\{f_k\}_{k=1}^{\infty}$ be a Cauchy sequence in *BMO*. Then, given $\varepsilon > 0$ there is a $k_0 \in \mathbb{Z}^+$ such that for any cube Q and any $k, m \ge k_0$ we have

$$\frac{1}{|Q|} \int_{Q} |f_{k} - (f_{k})_{Q} - (f_{m} - (f_{m})_{Q})| dx \le ||f_{k} - f_{m}||_{BMO} < \varepsilon.$$
 (6.1.9)

Thus $\{(f_k-(f_k)_Q)\chi_Q\}_{k=1}^\infty$ is a Cauchy sequence in L^1 and thus it converges in L^1 to a function F^Q supported in Q with $\int_{\mathbb{R}^n} F^Q dx = 0$. Note that if $Q \subseteq Q'$ then $(f_k)_Q - (f_k)_{Q'}$ converges to a constant as $k \to \infty$, thus $F^{Q'} - F^Q$ equals a constant C(Q',Q) on Q. Moreover, $(F^Q)_Q = 0$ for any cube Q.

Let $Q_N = [-N,N]^n$, N = 1,2,... We define a function F by setting $F = F^{Q_1}$ on Q_1 and $F = F^{Q_N} - C(Q_N,Q_{N-1})$ on Q_N for $N \ge 2$. Clearly F is well defined and lies in $L^1_{loc}(\mathbf{R}^n)$. The crucial observation is that for every cube Q there is a constant c_Q such that $F = F^Q + c_Q$ on Q. To see this, given a cube Q we find the least $N \ge 2$ such that $Q \subseteq Q_N$. Then if $c_Q = C(Q_N,Q) - C(Q_N,Q_{N-1})$ we have

$$F = F^{Q_N} - C(Q_N, Q_{N-1}) = F^Q + C(Q_N, Q) - C(Q_N, Q_{N-1}) = F^Q + c_Q$$
 on Q .

Note that since $(F^Q)_O = 0$, we have $F_O = c_O$. Letting $m \to \infty$ in (6.1.9) yields

$$\frac{1}{|Q|} \int_{Q} |f_k - (f_k)_Q - F^Q| dx \le \varepsilon \quad \text{for for } k \ge k_0 \text{ and any cube } Q.$$

But as $F^Q = F - c_O = F - F_O$ on Q we have

$$\sup_{Q} \frac{1}{|Q|} \int_{Q} |f_k - (f_k)_Q - (F - F_Q)| dx \le \varepsilon \quad \text{for any } k \ge k_0.$$

Thus $F \in BMO$ as $||F||_{BMO} \le ||f_{k_0}||_{BMO} + \varepsilon < \infty$, and $f_k \to F$ in BMO as $k \to \infty$. \square

We now examine some basic properties of BMO functions. For a ball B and a > 0, we denote by aB the ball that is concentric with B and whose radius is a times the radius of B.

Proposition 6.1.8. Let f be in $BMO_{balls}(\mathbf{R}^n)$ and let B and B' be balls in \mathbf{R}^n . (i) If $B \subset B'$, then

$$|f_B - f_{B'}| \le \frac{|B'|}{|B|} ||f||_{BMO_{\text{balls}}}.$$
 (6.1.10)

(ii) Let $B = B_0 \subset B_1 \subset \cdots \subset B_m = B'$, where B_i is a ball of radius at most twice that of the ball B_{i-1} for each $i = 1, \dots, m$. Then we have

$$|f_B - f_{B'}| \le 2^n m ||f||_{BMO_{\text{balls}}}.$$
 (6.1.11)

(iii) For any $\delta > 0$ there is a constant $C_{n,\delta}$ such that if B is centered at $x_0 \in \mathbf{R}^n$ and has radius R, then we have

$$R^{\delta} \int_{\mathbf{R}^{n}} \frac{\left| f(x) - f_{B} \right|}{(R + |x - x_{0}|)^{n + \delta}} dx \le C_{n, \delta} \left\| f \right\|_{BMO_{\text{balls}}}.$$
 (6.1.12)

An analogous estimate holds for cubes with center x_0 and side length R.