We now show that the seminorms $||f||_{BMO_{\text{balls}}}$ and $||f||_{BMO}$ are in fact comparable; thus the spaces $BMO(\mathbf{R}^n)$ and $BMO_{\text{balls}}(\mathbf{R}^n)$ contain the same functions.

Given any cube Q in \mathbb{R}^n , we let B be the smallest ball that contains it. Let v_n be the volume of the unit ball. Then

$$\frac{1}{|Q|} \int_{Q} \left| f(x) - f_{B} \right| dx \leq \frac{|B|}{|Q|} \frac{1}{|B|} \int_{B} \left| f(x) - f_{B} \right| dx \leq \frac{v_{n} \sqrt{n^{n}}}{2^{n}} \left\| f \right\|_{BMO_{\text{balls}}}.$$

It follows from Proposition 6.1.3 that $||f||_{BMO} \le 2^{1-n} v_n \sqrt{n^n} ||f||_{BMO_{\text{balls}}}$. Now given a ball B find the smallest cube Q that contains it. Then write

$$\frac{1}{|B|} \int_{B} \left| f(x) - f_{\mathcal{Q}} \right| dx \le \frac{|\mathcal{Q}|}{|B|} \frac{1}{|\mathcal{Q}|} \int_{\mathcal{Q}} \left| f(x) - f_{\mathcal{Q}} \right| dx \le \frac{2^{n}}{\nu_{n}} \left\| f \right\|_{BMO},$$

and this implies $||f||_{BMO_{\text{balls}}} \le 2^{n+1} v_n^{-1} ||f||_{BMO}$. We conclude that the spaces BMO and BMO_{balls} have comparable seminorms, hence they are isomorphic.

Proposition 6.1.4. *If* $f \in BMO$, then $|f| \in BMO$. f,g are real-valued BMO functions, then so are $\max(f,g)$ and $\min(f,g)$. Moreover,

$$||f||_{BMO} \le 2||f||_{BMO},$$
 (6.1.5)

$$\|\max(f,g)\|_{BMO} \le \frac{3}{2} \|f\|_{BMO} + \frac{3}{2} \|g\|_{BMO},$$
 (6.1.6)

$$\|\min(f,g)\|_{BMO} \le \frac{3}{2} \|f\|_{BMO} + \frac{3}{2} \|g\|_{BMO}.$$
 (6.1.7)

Proof. To prove (6.1.5), note that for each cube Q we have $\left||f|-|f_Q|\right| \leq |f-f_Q|$, which implies

$$||f| - |f_Q||_Q \le |f - f_Q|_Q \le ||f||_{BMQ}.$$
 (6.1.8)

Thus, for each cube Q there is a constant $C_Q = |f_Q|$ such that (6.1.8) holds. Appealing to Proposition 6.1.3 we deduce (6.1.5). Next, note that

$$\max(f,g) = \frac{f+g+|f-g|}{2} \quad \text{and} \quad \min(f,g) = \frac{f+g-|f-g|}{2}.$$

Then we obtain the estimate

$$\begin{aligned} \left\| \max(f,g) \right\|_{BMO} &\leq \frac{\left\| f \right\|_{BMO} + \left\| g \right\|_{BMO} + \left\| |f - g| \right\|_{BMO}}{2} \\ &\leq \frac{\left\| f \right\|_{BMO} + \left\| g \right\|_{BMO} + 2\left\| f - g \right\|_{BMO}}{2} \\ &\leq \frac{\left\| f \right\|_{BMO} + \left\| g \right\|_{BMO} + 2\left\| f \right\|_{BMO} + 2\left\| g \right\|_{BMO}}{2}. \end{aligned}$$

from which we obtain (6.1.6). Likewise we obtain (6.1.7).