1.3 Real Interpolation

1.3.4. Let (X, μ) and (Y, ν) be σ -finite measure spaces. Let *T* be a subadditive operator defined on $L^1(X, \mu) + L^{\infty}(X, \mu)$ that takes values in the space of measurable functions on (Y, ν) and that satisfies $|T(f)| \leq T(|f|)$ for all $f \in L^1 + L^{\infty}$. Suppose that *T* maps L^1 to $L^{1,\infty}$ with bound A_0 and L^{∞} to itself with bound $A_1 > 0$. Given 1 , prove that*T* $maps <math>L^p(X)$ to $L^p(Y)$ with norm at most

$$\frac{p}{p-1}A_0^{\frac{1}{p}}A_1^{1-\frac{1}{p}}$$

[*Hint:* Given $\lambda > 0$, $\gamma \in (0,1)$, and f measurable, write $|f| = f_0 + f_1$, where $f_0 = \max\left(|f| - \frac{\gamma\lambda}{A_1}, 0\right)$ and $f_1 = \min\left(|f|, \frac{\gamma\lambda}{A_1}\right)$. Then $\{T(|f|) > \lambda\} \subseteq \{|T(f_0)| > (1-\gamma)\lambda\}$. Then choose a suitable γ .]

1.3.5. Let (X, μ) , (Y, ν) be σ -finite measure spaces, and let $0 < p_0 < p_1 \le \infty$. Define p via $\frac{1-\theta}{p_0} + \frac{\theta}{p_1} = \frac{1}{p}$, where $0 < \theta < 1$. Let T be a subadditive operator defined on $L^{p_0}(X) + L^{p_1}(X)$ and taking values in the space of measurable functions on Y. Suppose T maps L^{p_0} to L^{∞} with norm A_0 and L^{p_1} to L^{∞} with norm A_1 . Prove that T maps L^p to L^{∞} with norm at most $2A_0^{1-\theta}A_1^{\theta}$.

1.3.6. Let (X, μ) and (Y, ν) be σ -finite measure spaces. Let $0 , <math>0 < B < \infty$, and let $\Phi : [0, \infty) \to [0, \infty)$ be a measurable function such that

$$A = \int_0^1 \lambda^{p-1} \Phi(1/\lambda) d\lambda < \infty.$$

Let T be a linear operator that maps $L^{p_1}(X)$ to $L^{p_1,\infty}(Y)$ with norm B that satisfies

$$v\big(\{y \in Y : |T(f)(y)| > \lambda\}\big) \le A \int_X \Phi\Big(\frac{|f(x)|}{\lambda}\Big) d\mu$$

for all finite simple functions f on X and all $\lambda > 0$. Prove that T has a bounded extension from $L^p(X)$ to itself. [*Hint:* Set $f^{\lambda} = f \chi_{|f| > \lambda}$ and $f_{\lambda} = f \chi_{|f| \le \lambda}$. When $p_1 < \infty$, add the estimates

$$p\lambda^{p-1}\nu(\{|T(f^{\lambda})|>\lambda\}) \leq Ap\lambda^{p-1}\int_{|f|>\lambda} \Phi\big(\frac{|f(x)|}{\lambda}\big)d\mu$$

and

$$p\lambda^{p-1}\mathbf{v}(\{|T(f_{\lambda})|>\lambda\}) \leq p\lambda^{p-1}B^{p_1}\int_{|f|\leq\lambda}rac{|f(x)|^{p_1}}{\lambda^{p_1}}d\mu$$

and integrate over λ to estimate $\frac{1}{2^p} ||T(f)||_{L^p}^p$. In the case where $p_1 = \infty$, use

$$\mathbf{v}(\{|T(f)| > 2B\lambda\}) \leq \mathbf{v}(\{|T(f^{\lambda})| > B\lambda\})$$

to complete the proof.

1.3.7. (Vector-valued Marcinkiewicz interpolation) Let (X, μ) , (Y, ν) be σ -finite measure spaces and $0 < p_0 < p_1 \le \infty$. Fix quasi-normed spaces Z, W. Define