Exercises

4.6.1. Prove that the set

$$\widehat{\mathscr{S}}_{0,\dots,0} = \left\{ \varphi \in \mathscr{S}(\mathbf{R}^n) : \ \widehat{\varphi} \in \mathscr{C}_0^{\infty} \ \text{and} \ \min_{1 \leq j \leq n} \operatorname{dist} \left[\operatorname{supp}(\widehat{\varphi}), \left\{ x \in \mathbf{R}^n : \ x_j = 0 \right\} \right] > 0 \right\}$$

is dense in $L^p(\mathbb{R}^n)$ when 1 . [Hint: Mimic the proof of Proposition 2.5.4.]

4.6.2. Let $1 . Prove that there is a constant <math>C_{n,p}$ such that for any finite subset S of \mathbb{Z}^n and every f_j in $L^p(\mathbb{R}^n)$, $j \in \mathbb{Z}^n$, we have

$$\left\| \sum_{\boldsymbol{j} \in S} \Delta_{\boldsymbol{j}}^{\sharp}(f_{\boldsymbol{j}}) \right\|_{L^{p}} \leq c_{n,p} \left\| \left(\sum_{\boldsymbol{j} \in S} |f_{\boldsymbol{j}}|^{2} \right)^{\frac{1}{2}} \right\|_{L^{p}}$$

and

$$\left\| \sum_{\boldsymbol{j} \in S} \Delta_{\boldsymbol{j}}^{\sharp}(f_{\boldsymbol{j}}) \right\|_{L^{p}} \leq c_{n,p} \left\| \left(\sum_{\boldsymbol{j} \in S} |\Delta_{\boldsymbol{j}}^{\sharp}(f_{\boldsymbol{j}})|^{2} \right)^{\frac{1}{2}} \right\|_{L^{p}}.$$

Conclude that there is a constant $C_{n,p}$ such that for every $f \in L^p(\mathbf{R}^n)$ we have

$$\left\| \sum_{\boldsymbol{i} \in S} \Delta_{\boldsymbol{j}}^{\sharp}(f) \right\|_{L^{p}} \leq C_{n,p} \left\| f \right\|_{L^{p}}.$$

4.6.3. Suppose that $\{m_j\}_{j \in \mathbb{Z}^n}$ is a sequence of bounded functions supported in the sets R_j defined in (4.6.5). Let $T_j(f) = (\widehat{f}m_j)^\vee$ be the multiplier operator associated with m_j . Let $1 . Assume that there is a constant <math>A_p$ for all sequences of functions $\{f_j\}_{j \in \mathbb{Z}^n}$ with $f_j \in L^p(\mathbb{R}^n)$ the vector-valued inequality

$$\left\| \left(\sum_{\boldsymbol{j} \in \mathbf{Z}^n} |T_{\boldsymbol{j}}(f_{\boldsymbol{j}})|^2 \right)^{\frac{1}{2}} \right\|_{L^p(\mathbf{R}^n)} \le A_p \left\| \left(\sum_{\boldsymbol{j} \in \mathbf{Z}^n} |f_{\boldsymbol{j}}|^2 \right)^{\frac{1}{2}} \right\|_{L^p(\mathbf{R}^n)}$$

is valid. Prove there is a $C_{p,n} > 0$ such that for all finite subsets S of \mathbb{Z}^n we have

$$\left\| \sum_{j \in S} m_j \right\|_{\mathscr{M}_p} \leq C_{p,n} A_p.$$

4.6.4. Fix $\theta \in \mathbf{S}^{n-1}$. For $j \in \mathbf{Z}$ define sets $S_j^{\theta} = \{ \xi \in \mathbf{R}^n : 2^j \le |\xi \cdot \theta| < 2^{j+1} \}$ and operators $T_{S_j^{\theta}}(f) = (\widehat{f}\chi_{S_j^{\theta}})^{\vee}$ initially on $\mathscr{S}(\mathbf{R}^n)$ and later extended on $L^p(\mathbf{R}^n)$ for $1 . Prove that for any <math>g \in L^p(\mathbf{R}^n)$ we have

$$\|g\|_{L^p(\mathbf{R}^n)} pprox \|\Big(\sum_{j\in\mathbf{Z}} |T_{S_j^{\theta}}(g)|^2\Big)^{\frac{1}{2}}\|_{L^p(\mathbf{R}^n)}.$$

[*Hint:* Consider first the case $\theta = e_1$ and then apply a rotation.]