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Exercises

4.6.1. Prove that the set
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is dense in Lp(Rn) when 1 < p < •.
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Hint: Mimic the proof of Proposition 2.5.4.
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4.6.2. Let 1 < p < •. Prove that there is a constant Cn,p such that for any finite
subset S of Zn and every f jjj in Lp(Rn), jjj 2 Zn, we have
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Conclude that there is a constant Cn,p such that for every f 2 Lp(Rn) we have
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4.6.3. Suppose that {m jjj} jjj2Zn is a sequence of bounded functions supported in the
sets R jjj defined in (4.6.5). Let Tjjj( f ) = (bf m jjj)_ be the multiplier operator associated
with m jjj. Let 1 < p < •. Assume that there is a constant Ap for all sequences of
functions { f jjj} jjj2Zn with f jjj 2 Lp(Rn) the vector-valued inequality
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is valid. Prove there is a Cp,n > 0 such that for all finite subsets S of Zn we have
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4.6.4. Fix q 2 Sn�1. For j 2 Z define sets Sq
j = {x 2 Rn : 2 j  |x ·q |< 2 j+1} and

operators TSq
j
( f ) = (bf cSq

j
)_ initially on S (Rn) and later extended on Lp(Rn) for

1 < p < •. Prove that for any g 2 Lp(Rn) we have
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Hint: Consider first the case q = e1 and then apply a rotation.
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