$$\begin{split} \sup_{y \in \mathbf{R}^n \setminus \{0\}} \int_{|x| \ge 2|y|} \left(\sum_{j \in \mathbf{Z}} |K_j(x - y) - K_j(x)|^2 \right)^{\frac{1}{2}} dx \le \mathbf{A}_2 < \infty, \\ \sup_{j \in \mathbf{Z}} \sup_{\varepsilon > 0} \sup_{R > \varepsilon} \left| \int_{\varepsilon \le |y| \le R} K_j(y) \, dy \right| \le \mathbf{A}_3 < \infty, \end{split}$$

and there is a sequence $\varepsilon_k \downarrow 0$ and numbers L_j (for each $j \in \mathbf{Z}$) such that

$$\lim_{\varepsilon_k \downarrow 0} \int_{\varepsilon_k \le |y| \le 1} K_j(y) \, dy = L_j.$$

Suppose that the functions K_i coincide with tempered distributions W_i that satisfy

$$\sum_{j\in\mathbf{Z}}|\widehat{W}_j(\xi)|^2\leq B^2\,,\qquad \xi\in\mathbf{R}^n.$$

Prove that the operator

$$f \to \left(\sum_{i \in \mathbf{Z}} |K_i * f|^2\right)^{\frac{1}{2}}$$

maps $L^p(\mathbf{R}^n)$ to itself and is of weak type (1,1) with norms at most $C_{n,p}(A_2+B)$. [*Hint:* Notice that (4.4.12), (4.4.13), (4.4.14), and (4.4.15) hold by assumption.]

4.5 Reverse Littlewood–Paley Inequalities

The focus of this section is to study the reverse inequality of that in Theorem 4.4.2. We recall that $\langle f, \varphi \rangle$ denotes the action of a tempered distribution f on a Schwartz function φ , and $\langle f, \varphi \rangle$ coincides with the standard Lebesgue integral $\int_{\mathbb{R}^n} f(x) \varphi(x) dx$ if f happens to be an L^p function for some $1 \le p \le \infty$.

We can extend the definition of the Littlewood–Paley operator Δ_j^{Ω} to tempered distributions whenever Ω is a Schwartz function. Precisely, if $\Omega \in \mathscr{S}(\mathbf{R}^n)$ and f in $\mathscr{S}'(\mathbf{R}^n)$, then $\Delta_j^{\Omega}(f)$ is well defined as the convolution $\Omega_{2^{-j}} * f$. This convolution always produces a smooth function (Theorem 2.7.1).

Recall the reflection $\widetilde{\Omega}$ of a function Ω is given by $\widetilde{\Omega}(x) = \Omega(-x)$ for $x \in \mathbf{R}^n$. We begin by identifying the transpose operator of Δ_i^{Ω} for a function Ω .

Proposition 4.5.1. (a) If Ω lies in $L^1(\mathbf{R}^n)$ and f in $L^p(\mathbf{R}^n)$, $1 \le p \le \infty$, then we have

$$\langle f, \Delta_i^{\Omega}(g) \rangle = \langle \Delta_i^{\widetilde{\Omega}}(f), g \rangle$$
 whenever $g \in L^{p'}(\mathbf{R}^n)$. (4.5.1)

(b) For any $f \in \mathcal{S}'(\mathbf{R}^n)$ and $\Omega \in \mathcal{S}(\mathbf{R}^n)$ we have

$$\langle f, \Delta_i^{\Omega}(\varphi) \rangle = \langle \Delta_i^{\widetilde{\Omega}}(f), \varphi \rangle$$
 whenever $\varphi \in \mathscr{S}(\mathbf{R}^n)$. (4.5.2)

Thus, in these senses, the transpose of the operator Δ_j^{Ω} is $\Delta_j^{\widetilde{\Omega}}$.