(b) Here  $\vec{G} = \{g_j\}_{j=1}^N$  is a row vector but  $\vec{S}(\vec{G})$  is now a row vector consisting of columns of length L. The jth column of  $\vec{S}(\vec{G})$  is  $(K_i * g_j)_{i=1}^L$ . In this case we obtain (4.3.9) by repeating the proof of estimate (4.1.8) and replacing any appearance of  $\ell_M^g$  in the range by  $\ell_N^q(\ell_L^\infty)$ . Note that the domain  $\ell_N^q(\ell_1^1) = \ell_N^q$  remains unchanged.

The transpose operator  $\vec{T}^t$  of  $\vec{T}$  has kernel  $(\widetilde{K_1}, \dots, \widetilde{K_L})^t$  and the transpose operator  $\vec{S}^t$  of  $\vec{S}$  has kernel  $(\widetilde{K_1}, \dots, \widetilde{K_L})$ , and these kernels obviously satisfy (4.3.5) and (4.3.6). So, modulo the reflection of the  $K_j$ , the operators  $\vec{T}$  and  $\vec{S}$  are transposes of one another. Next we interpolate between  $\vec{T}: L^r(\mathbf{R}^n, \ell_N^q(\ell_L^1)) \to L^r(\mathbf{R}^n, \ell_N^q)$  and estimate (4.3.7). Using Exercise 1.3.7, we obtain for 1

$$\|\vec{T}\|_{L^{p}(\mathbf{R}^{n},\ell_{N}^{q}(\ell_{L}^{1}))\to L^{p}(\mathbf{R}^{n},\ell_{N}^{q})} \leq 2C'_{n}\left(\frac{p}{p-1} + \frac{p}{r-p}\right)^{\frac{1}{p}}(A_{2} + B_{\star}). \tag{4.3.11}$$

If  $r = \infty$ , the constant in (4.3.11) raised to the power 1/p is bounded by  $C(p) = p(p-1)^{-1}$ . Now if  $r < \infty$ , notice that  $\vec{T}^t$  maps  $L^{r'}(\mathbf{R}^n, \ell_N^{q'})$  to  $L^{r'}(\mathbf{R}^n, \ell_N^{q'}(\ell_L^\infty))$  with bound  $B_{\star}$ . As the kernel of  $\vec{T}^t$  satisfies the same estimates as that of  $\vec{S}$ , it follows that  $\vec{T}^t$  also admits a bounded extension from  $L^1(\mathbf{R}^n, \ell_N^{q'})$  to  $L^{1,\infty}(\mathbf{R}^n, \ell_N^{q'}(\ell_L^\infty))$  with bound at most  $C_n'(A_2 + B_{\star})$ . By interpolation (Exercise 1.3.7) we obtain for 1 < p' < r'

$$\|\vec{T}^t\|_{L^{p'}(\mathbf{R}^n, \ell_N^{q'}) \to L^{p'}(\mathbf{R}^n, \ell_N^{q'}(\ell_L^{\infty}))} \le 2C_n' \left(\frac{p'}{p'-1} + \frac{p'}{r'-p'}\right)^{\frac{1}{p'}} (A_2 + B_{\star}). \tag{4.3.12}$$

Estimates (4.3.11) and (4.3.12) imply statements analogous to (4.1.19) and (4.1.20) with  $\ell_N^q$  replaced by  $\ell_N^q(\ell_L^1)$  and  $\ell_M^s$  replaced by  $\ell_N^q$ . The rest of the argument proceeds as that in the proof of Theorem 4.1.1 A completely analogous argument is also valid for  $\vec{S}$ . Combining these ingredients completes the proof.

We now pass to an application which extends the discussion in Example 4.2.4. Let  $\Phi(x) = (1+|x|)^{-n-\gamma}$  be as in that example. For a fixed odd positive integer L let  $\{t_1, \ldots, t_L\} = \{2^{-[L/2]}, 2^{-[L/2]+1}, \ldots, 2^{[L/2]}\}$ . We consider the  $L \times 1$  matrix  $\vec{K}(x) = (\Phi_{t_1}(x), \ldots, \Phi_{t_L}(x))^t$  defined on  $\mathbb{R}^n$ . This matrix can be viewed as the operator

$$(a_{1}, a_{2}, \dots, a_{N}) \mapsto \begin{pmatrix} \Phi_{t_{1}}(x) \\ \Phi_{t_{2}}(x) \\ \vdots \\ \Phi_{t_{L}}(x) \end{pmatrix} \begin{pmatrix} a_{1} \ a_{2} \cdots \ a_{N} \end{pmatrix} = \begin{pmatrix} \Phi_{t_{1}}(x) a_{1} \ \Phi_{t_{1}}(x) a_{2} \dots \ \Phi_{t_{1}}(x) a_{N} \\ \Phi_{t_{2}}(x) a_{1} \ \Phi_{t_{2}}(x) a_{2} \dots \ \Phi_{t_{L}}(x) a_{N} \\ \vdots \ \vdots \ \vdots \ \vdots \\ \Phi_{t_{L}}(x) a_{1} \ \Phi_{t_{L}}(x) a_{2} \dots \ \Phi_{t_{L}}(x) a_{N} \end{pmatrix},$$

which maps  $\ell_N^r$  to  $\ell_N^r(\ell_L^{\infty})$  with norm

$$\left\|\vec{K}(x)\right\|_{\ell^r_N \to \ell^r_N(\ell^\infty_L)} = \sup_{1 \le i \le L} |\Phi_{t_i}(x)|.$$

Properties (4.3.5) and (4.3.6) are proved via the arguments yielding (4.2.7) and (4.2.8), respectively. Additionally, for  $1 < r < \infty$ , the estimate