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(b) Here ~G = {g j}N
j=1 is a row vector but ~S(~G) is now a row vector consisting of

columns of length L. The jth column of ~S(~G) is (Ki ⇤g j)L
i=1. In this case we obtain

(4.3.9) by repeating the proof of estimate (4.1.8) and replacing any appearance of
`s

M in the range by `q
N(`

•
L ). Note that the domain `q

N(`
1
1) = `q

N remains unchanged.

The transpose operator ~Tt of ~T has kernel (fK1, . . . ,fKL)t and the transpose oper-
ator ~St of ~S has kernel (fK1, . . . ,fKL), and these kernels obviously satisfy (4.3.5) and
(4.3.6). So, modulo the reflection of the Kj, the operators ~T and ~S are transposes
of one another. Next we interpolate between ~T : Lr(Rn,`q

N(`
1
L))! Lr(Rn,`q

N) and
estimate (4.3.7). Using Exercise 1.3.7, we obtain for 1 < p < r
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If r = •, the constant in (4.3.11) raised to the power 1/p is bounded by C(p) =
p(p�1)�1. Now if r < •, notice that ~Tt maps Lr0(Rn,`q0

N ) to Lr0(Rn,`q0
N (`

•
L )) with

bound B?. As the kernel of ~Tt satisfies the same estimates as that of~S, it follows that
~Tt also admits a bounded extension from L1(Rn,`q0

N ) to L1,•(Rn,`q0
N (`

•
L )) with bound

at most C0
n(A2 +B?). By interpolation (Exercise 1.3.7) we obtain for 1 < p0 < r0
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Estimates (4.3.11) and (4.3.12) imply statements analogous to (4.1.19) and (4.1.20)
with `q

N replaced by `q
N(`

1
L) and `s

M replaced by `q
N . The rest of the argument proceeds

as that in the proof of Theorem 4.1.1 A completely analogous argument is also valid
for ~S. Combining these ingredients completes the proof. ⇤

We now pass to an application which extends the discussion in Example 4.2.4.
Let F(x) = (1+ |x|)�n�g be as in that example. For a fixed odd positive integer L
let {t1, . . . , tL}= {2�[L/2],2�[L/2]+1, . . . ,2[L/2]}. We consider the L⇥1 matrix ~K(x)=
(Ft1(x), . . . ,FtL(x))

t defined on Rn. This matrix can be viewed as the operator
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which maps `r
N to `r

N(`
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L ) with norm
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= sup
1iL

|Fti(x)|.

Properties (4.3.5) and (4.3.6) are proved via the arguments yielding (4.2.7) and
(4.2.8), respectively. Additionally, for 1 < r < •, the estimate


