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1.2.3. (Fatou’s lemma for weak Lp spaces) Let fk � 0 be measurable functions on
a measure space (X ,µ) and 0 < p < •. Prove that
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⇥
Hint: Set gk = inf{ fl : l � k} and use the previous exercise.

⇤

1.2.4. Suppose f and fk are measurable functions on Rn. Prove that if | f | 
liminfk!• | fk| a.e., then D f  liminfk!• D fk .

1.2.5. Let 0 < p0 < p < p1  • and let 1
p = 1�q

p0
+ q

p1
for some q 2 (0,1). Prove
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1.2.6. Let (X ,µ) be a measure space and let E be a subset of X with µ(E) < •.
Assume that f is in Lp,•(X ,µ) for some 0 < p < •.
(a) Show that for 0 < q < p we have
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(b) Prove that if µ(X)< • and 0 < q < p < •, then

Lp(X ,µ)j Lp,•(X ,µ)j Lq(X ,µ).

(c) Conclude that Lp,•(Rn) is contained in L1
loc(Rn) when p > 1.

1.2.7. (Hölder’s inequality for weak Lp spaces) Let f1 be in Lp1,• and f2 be in
Lp2,• of a measure space (X ,µ) where 0 < p1, p2 < •. Given 1

p = 1
p1
+ 1

p2
, prove

that
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Observe that the preceding inequality also extends to the case where p1, p2 equal •.⇥
Hint: For k f jkLp j ,• = 1, j = 1,2, use D f1 f2(l ) µ({| f1|> l/s})+µ({| f2|> s})
 (s/l )p1 +(1/s)p2 and minimize over s > 0.

⇤

1.2.8. Let f 2 L1([0,•)) and g 2 L1((�•,0]). Prove that the function

x 7!
Z

R
f (x+ t)g(x� t)

dt
t

lies in L1/2,•(R) with quasi-norm bounded by 4k fkL1kgkL1 .
⇥
Hint: Control this

function pointwise by |x|�1G(x), for some G � 0 with kGkL1  1
2k fkL1kgkL1 .

⇤


