1.2.3. (Fatou's lemma for weak L^p spaces) Let $f_k \geq 0$ be measurable functions on a measure space (X, μ) and $0 < p < \infty$. Prove that

$$
\big\|\liminf_{k\to\infty}f_k\big\|_{L^{p,\infty}}\leq \liminf_{k\to\infty}\big\|f_k\big\|_{L^{p,\infty}}.
$$

Hint: Set $g_k = \inf\{f_l : l \ge k\}$ and use the previous exercise.

1.2.4. Suppose f and f_k are measurable functions on \mathbb{R}^n . Prove that if $|f| \leq$ $\liminf_{k\to\infty}$ $|f_k|$ a.e., then $D_f \leq \liminf_{k\to\infty}$ D_{f_k} .

1.2.5. Let
$$
0 < p_0 < p < p_1 \leq \infty
$$
 and let $\frac{1}{p} = \frac{1-\theta}{p_0} + \frac{\theta}{p_1}$ for some $\theta \in (0,1)$. Prove $\|\cdot\|_{\mathcal{L}} \leq \|\cdot\|_{\mathcal{L}} \|\cdot\|_{\mathcal{L}} \|\theta$

$$
||f||_{L^{p,\infty}} \leq ||f||_{L^{p_0,\infty}}^{1-\theta} ||f||_{L^{p_1,\infty}}^{\theta}.
$$

1.2.6. Let (X, μ) be a measure space and let *E* be a subset of *X* with $\mu(E) < \infty$. Assume that *f* is in $L^{p,\infty}(X,\mu)$ for some $0 < p < \infty$. (a) Show that for $0 < q < p$ we have

$$
\int_{E} |f(x)|^{q} d\mu(x) \leq \frac{p}{p-q} \mu(E)^{1-\frac{q}{p}} ||f||_{L^{p,\infty}}^{q}.
$$

(b) Prove that if $\mu(X) < \infty$ and $0 < q < p < \infty$, then

$$
L^p(X,\mu) \subseteqq L^{p,\infty}(X,\mu) \subseteqq L^q(X,\mu).
$$

(c) Conclude that $L^{p,\infty}(\mathbf{R}^n)$ is contained in $L^1_{loc}(\mathbf{R}^n)$ when $p > 1$.

1.2.7. (Hölder's inequality for weak L^p **spaces)** Let f_1 be in $L^{p_1,\infty}$ and f_2 be in $L^{p_2,\infty}$ of a measure space (X,μ) where $0 < p_1, p_2 < \infty$. Given $\frac{1}{p} = \frac{1}{p_1} + \frac{1}{p_2}$, prove that

$$
||f_1f_2||_{L^{p,\infty}} \leq \left[(p_2/p_1)^{\frac{p_1}{p_1+p_2}} + (p_1/p_2)^{\frac{p_2}{p_1+p_2}} \right]^{\frac{1}{p}} ||f_1||_{L^{p_1,\infty}} ||f_2||_{L^{p_2,\infty}}.
$$

Observe that the preceding inequality also extends to the case where p_1, p_2 equal ∞ . *Hint*: For $||f_j||_{L^{p_j,\infty}} = 1$, $j = 1, 2$, use $D_{f_1,f_2}(\lambda) \leq \mu({||f_1| > \lambda/s}) + \mu({||f_2| > s})$ $\leq (s/\lambda)^{p_1} + (1/s)^{p_2}$ and minimize over $s > 0$.

1.2.8. Let $f \in L^1([0,\infty))$ and $g \in L^1((-\infty,0])$. Prove that the function

$$
x \mapsto \int_{\mathbf{R}} f(x+t)g(x-t) \frac{dt}{t}
$$

lies in $L^{1/2,\infty}(\mathbf{R})$ with quasi-norm bounded by $4||f||_{L^1}||g||_{L^1}$. [*Hint:* Control this function pointwise by $|x|^{-1}G(x)$, for some $G \ge 0$ with $||G||_{L^1} \le \frac{1}{2}||f||_{L^1}||g||_{L^1}$.