1.2.3. (Fatou's lemma for weak L^p spaces) Let $f_k \ge 0$ be measurable functions on a measure space (X, μ) and 0 . Prove that

$$\left\| \liminf_{k \to \infty} f_k \right\|_{L^{p,\infty}} \le \liminf_{k \to \infty} \left\| f_k \right\|_{L^{p,\infty}}.$$

[Hint: Set $g_k = \inf\{f_l : l \ge k\}$ and use the previous exercise.]

- **1.2.4.** Suppose f and f_k are measurable functions on \mathbb{R}^n . Prove that if $|f| \le \liminf_{k \to \infty} |f_k|$ a.e., then $D_f \le \liminf_{k \to \infty} D_{f_k}$.
- **1.2.5.** Let $0 < p_0 < p < p_1 \le \infty$ and let $\frac{1}{p} = \frac{1-\theta}{p_0} + \frac{\theta}{p_1}$ for some $\theta \in (0,1)$. Prove

$$||f||_{L^{p,\infty}} \le ||f||_{L^{p_0,\infty}}^{1-\theta} ||f||_{L^{p_1,\infty}}^{\theta}.$$

- **1.2.6.** Let (X, μ) be a measure space and let E be a subset of X with $\mu(E) < \infty$. Assume that f is in $L^{p,\infty}(X,\mu)$ for some 0 .
- (a) Show that for 0 < q < p we have

$$\int_{E} |f(x)|^{q} d\mu(x) \leq \frac{p}{p-q} \mu(E)^{1-\frac{q}{p}} ||f||_{L^{p,\infty}}^{q}.$$

(b) Prove that if $\mu(X) < \infty$ and $0 < q < p < \infty$, then

$$L^p(X,\mu) \subseteq L^{p,\infty}(X,\mu) \subseteq L^q(X,\mu).$$

- (c) Conclude that $L^{p,\infty}(\mathbf{R}^n)$ is contained in $L^1_{loc}(\mathbf{R}^n)$ when p > 1.
- **1.2.7.** (Hölder's inequality for weak L^p spaces) Let f_1 be in $L^{p_1,\infty}$ and f_2 be in $L^{p_2,\infty}$ of a measure space (X,μ) where $0 < p_1, p_2 < \infty$. Given $\frac{1}{p} = \frac{1}{p_1} + \frac{1}{p_2}$, prove that

$$||f_1f_2||_{L^{p,\infty}} \le \left[(p_2/p_1)^{\frac{p_1}{p_1+p_2}} + (p_1/p_2)^{\frac{p_2}{p_1+p_2}} \right]^{\frac{1}{p}} ||f_1||_{L^{p_1,\infty}} ||f_2||_{L^{p_2,\infty}}.$$

Observe that the preceding inequality also extends to the case where p_1, p_2 equal ∞ . [*Hint:* For $||f_j||_{L^{p_j,\infty}} = 1$, j = 1, 2, use $D_{f_1f_2}(\lambda) \le \mu(\{|f_1| > \lambda/s\}) + \mu(\{|f_2| > s\}) \le (s/\lambda)^{p_1} + (1/s)^{p_2}$ and minimize over s > 0.]

1.2.8. Let $f \in L^1([0,\infty))$ and $g \in L^1((-\infty,0])$. Prove that the function

$$x \mapsto \int_{\mathbf{R}} f(x+t)g(x-t) \frac{dt}{t}$$

lies in $L^{1/2,\infty}(\mathbf{R})$ with quasi-norm bounded by $4\|f\|_{L^1}\|g\|_{L^1}$. [Hint: Control this function pointwise by $|x|^{-1}G(x)$, for some $G \ge 0$ with $\|G\|_{L^1} \le \frac{1}{2}\|f\|_{L^1}\|g\|_{L^1}$.]