3.7.5. For $1 let <math>A_p = ||H||_{L^p \to L^p}$ and $B_p = ||\mathfrak{M}||_{L^p \to L^p}$, where H is the Hilbert transform and \mathfrak{M} is the (centered) Hardy–Littlewood maximal function on \mathbb{R} . Let Q be the conjugate Poisson kernel. Prove that for any $f \in L^p(\mathbb{R})$ we have

$$\sup_{\varepsilon>0} \|Q_{\varepsilon} * f\|_{L^{p}(\mathbf{R})} \le A_{p} \|f\|_{L^{p}(\mathbf{R})},$$

$$\|\sup_{\varepsilon>0} |Q_{\varepsilon} * f|\|_{L^{p}(\mathbf{R})} \le A_{p} B_{p} \|f\|_{L^{p}(\mathbf{R})}.$$

[Hint: Use Lemma 3.7.2 and Proposition 2.5.3.]

144

3.7.6. Let $2 \le p < \infty$. Prove that for any real-valued function $f \in L^p(\mathbf{R})$ we have

$$\sup_{\varepsilon>0}\left\|\left(P_{\varepsilon}*f\right)+i\left(Q_{\varepsilon}*f\right)\right\|_{L^{p}(\mathbf{R})}\leq (1+A_{p}^{2})^{\frac{1}{2}}\left\|f\right\|_{L^{p}(\mathbf{R})},$$

where $A_p = ||H||_{L^p \to L^p}$ and H is the Hilbert transform. [*Hint:* Use the preceding exercise and the subadditivity of the $L^{p/2}$ norm.

3.7.7. On \mathbb{R}^n define the *j*th *conjugate Poisson kernel* $Q^{(j)}$ by

$$Q^{(j)}(x) = \frac{\Gamma(\frac{n+1}{2})}{\pi^{\frac{n+1}{2}}} \frac{x_j}{(|x|^2 + 1)^{\frac{n+1}{2}}}, \qquad 1 \le j \le n.$$

Let $Q_y^{(j)}$ be the L^1 dilation of $Q^{(j)}$ for y > 0. Prove that

$$(Q_y^{(j)})^{\wedge}(\xi) = -irac{\xi_j}{|\xi|}e^{-2\pi y|\xi|}\,.$$

Conclude that $R_j(P_y) = Q_y^{(j)}$ and that for all f in $L^p(\mathbf{R}^n)$, $1 , we have <math>R_j(f) * P_y = f * Q_y^{(j)}$ for y > 0.

3.7.8. Let $f \in L^p(\mathbf{R}^n)$ where $1 . Prove that the truncated Riesz transforms <math>R_i^{(\varepsilon)}(f)$ converge to $R_j(f)$ in L^p and a.e. as $\varepsilon \to 0$.

[*Hint*: Using Exercise 3.7.7, write $R_j^{(\varepsilon)}(f) = R_j^{(\varepsilon)}(f) - f * Q_{\varepsilon}^{(j)} + R_j(f) * P_{\varepsilon}$ and then apply the idea in Theorem 3.7.4.]

3.7.9. Let η be an even smooth function on the real line such that $\eta(t) = 1$ for $|t| \ge 1$ and η vanishes for $|t| \le \frac{1}{2}$. Define the *smoothly truncated Hilbert transform* (associated with η) acting on a function $f \in L^p(\mathbf{R})$ (1 by

$$H_{\eta}^{(\varepsilon)}(f)(x) = \int_{\mathbb{R}} f(x-t) \frac{\eta(t/\varepsilon)}{t} dt.$$

Given $1 and <math>f \in L^p(\mathbf{R})$, prove that $H_{\eta}^{(\varepsilon)}(f) \to H(f)$ in L^p and a.e. as $\varepsilon \to 0$.