Corollary 3.6.2. Let K be a function on $\mathbb{R}^n \setminus \{0\}$ that satisfies (3.3.3), (3.3.4), and (3.3.5) for some $A_1, A_2, A_3 < \infty$. Let W be the distribution associated with K as in (3.3.8). Then T has an extension on L^p for all $p \in [1, \infty)$ that satisfies (3.6.1) and (3.6.2) with $B = 9\omega_{n-1}A_1 + A_2 + A_3$.

Proof. Conditions (3.3.3), (3.3.4), and (3.3.5) imply that T is L^2 bounded with bound $B \le 9\omega_{n-1}A_1 + A_2 + A_3$ in view of Theorem 3.4.2. Then the L^2 hypothesis in Theorem 3.6.1 also holds and the conclusion follows.

Corollary 3.6.3. The Hilbert transform and the Riesz transforms are bounded from L^1 to $L^{1,\infty}$ and from L^p for all $1 with bounds <math>C(n) \max((p-1)^{-1}, p)$.

Proof. This is a direct consequence of Corollary 3.6.2. \Box

Having established the L^p boundedness of the Hilbert transform and of the Riesz transforms for $1 , we turn to general odd singular integrals of homogeneous type. We begin with the observation that the Hilbert transform acting on the first variable on <math>\mathbf{R}^n$ composed with the identity operator in the remaining variables

$$\mathscr{H}_{e_1}(f)(x_1, x_2, \dots, x_n) = \lim_{\varepsilon \to 0^+} \frac{1}{\pi} \int_{|t| > \varepsilon} f(x_1 - t, x_2, \dots, x_n) \frac{dt}{t}, \tag{3.6.7}$$

defined for $f \in \mathcal{S}(\mathbf{R}^n)$, is bounded on $L^p(\mathbf{R}^n)$ with bound $C_p = ||H||_{L^p \to L^p}$. To verify this, we raise the absolute values of both sides in (3.6.7) to the power p and then integrate in x_1 . Using the boundedness of the Hilbert transform we estimate the right-hand side by

$$C_p^p \int_{\mathbf{R}} |f(x_1, x_2, \dots, x_n)|^p dx_1.$$

Integrating over the remaining variables implies the conclusion. Next, for a unit vector $\theta \in \mathbf{S}^{n-1}$ we define

$$\mathscr{H}_{\theta}(f)(x) = \lim_{\varepsilon \to 0^{+}} \frac{1}{\pi} \int_{|t| \ge \varepsilon} f(x - t\theta) \frac{dt}{t}, \qquad f \in \mathscr{S}(\mathbf{R}^{n}), \tag{3.6.8}$$

called the *directional Hilbert transform* in the direction θ . We observe that the following identity is valid for all matrices $A \in O(n)$:

$$\mathscr{H}_{Ae_1}(f)(x) = \mathscr{H}_{e_1}(f \circ A)(A^{-1}x).$$
 (3.6.9)

Now given $\theta \in \mathbb{S}^{n-1}$ pick $A \in O(n)$ such that $Ae_1 = \theta$. This implies that

$$\left\|\mathscr{H}_{\theta}(f)\right\|_{L^{p}}=\left\|\mathscr{H}_{e_{1}}(f\circ A)\circ A^{-1}\right\|_{L^{p}}=\left\|\mathscr{H}_{e_{1}}(f\circ A)\right\|_{L^{p}}\leq C_{p}\left\|f\circ A\right\|_{L^{p}}=C_{p}\left\|f\right\|_{L^{p}},$$

and this yields that \mathcal{H}_{θ} maps $L^p(\mathbf{R}^n)$ to itself $L^p(\mathbf{R}^n)$ uniformly in θ . We use this to obtain boundedness for T_{Ω} (Definition 3.2.2) when Ω is an odd bounded function. Such functions clearly have vanishing integral.

Corollary 3.6.4. Let $\Omega \in L^{\infty}(\mathbf{S}^{n-1})$ be odd and let T_{Ω} be as in Definition 3.2.2. Then for $1 , <math>T_{\Omega}$ admits a bounded extension from $L^p(\mathbf{R}^n)$ to itself with norm at most $\frac{\pi \omega_{n-1}}{2} \|\Omega\|_{L^{\infty}} \|H\|_{L^p \to L^p}$.