136 3 Singular Integrals
Thus we proved that
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an inequality we use below. Appealmg to (3.6.3), we write
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Choosing y = B~!, we deduce estimate (3.6.1) with C, = (2/n)" +2"*2,

By the density argument discussed at the beginning of the proof, T is well de-
fined on L', and thus on LP which is contained in L' + L? for 1 < p < 2. Using
Theorem 1.3.3 (Marcinkiewicz’s interpolation theorem) we obtain that
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We now observe that the transpose operator T’ of T has kernel K’ (x) = K(—x) which
also satisfies (3.3.3) and (3.3.4) for some A1,A; < o and moreover 7" maps LZ(R”)
to itself with the same norm B. Then T satisfies (3.6.4), which implies
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Now we employ Theorem 1.3.3 to interpolate between L5/* and L5. We obtain
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For 1 < p < 3, we use (3.6.4) to obtain ||T||r—,.» < 4—pC/ " (As —|—B) For 3 < p <o,
(3.6.5) yields the bound || T ||r— 10 < 4pCl (A2 +B) Finally, for < p <3 weuse

(3.6.6) to obtain the bound || T||r—1r < pSTple[ (A, +B). Combmmg these cases, we
deduce (3.6.2). O



