Remark 1.2.7. Note that for $0 < r < \infty$, $|||f|^r||_{L^p} = ||f||_{L^{pr}}^r$. One can verify that the same property holds for the weak L^p quasi-norm, i.e., $|||f|^r||_{L^{p,\infty}} = ||f||_{L^{pr,\infty}}^r$.

Definition 1.2.8. The space $L^1_{loc}(\mathbb{R}^n, |\cdot|)$ of *locally integrable* functions is the set of all Lebesgue-measurable functions f on \mathbb{R}^n that satisfy

$$\int_{K} |f(x)| \, dx < \infty \tag{1.2.7}$$

for any compact subset K of \mathbf{R}^n .

Example 1.2.9. (a) $L^p(\mathbf{R}^n)$ is contained in $L^1_{loc}(\mathbf{R}^n)$ for $1 \le p \le \infty$ (Theorem 1.1.3).

- (b) For $0 , <math>L^p(\mathbf{R}^n) \setminus L^1_{loc}(\mathbf{R}^n) \neq \emptyset$; i.e., it contains $|x|^{-\frac{n}{p}} \left(\log \frac{1}{|x|}\right)^{-\frac{2}{p}} \chi_{|x| < \frac{1}{3}}$.
- (c) There exist functions in $L^{1,\infty}(\mathbf{R}^n) \setminus L^1_{loc}(\mathbf{R}^n)$, such as $|x|^{-n}$.
- (d) The function $e^{e^{|x|}}$ lies in $L^1_{loc}(\mathbf{R}^n)$ but not in $L^p(\mathbf{R}^n)$ for any p > 0.

Theorem 1.2.10. For a measurable function f on a σ -finite measure space (X,μ) define

$$\|\|f\|\|_{L^{p,\infty}} = \sup_{0 < \mu(E) < \infty} \mu(E)^{-1 + \frac{1}{p}} \int_{E} |f| d\mu.$$

Let $1 . Then <math>||| \cdot |||_{L^{p,\infty}}$ is a norm on $L^{p,\infty}$ that satisfies

$$||f||_{L^{p,\infty}} \le |||f|||_{L^{p,\infty}} \le \frac{p}{p-1} ||f||_{L^{p,\infty}}.$$

Proof. Let $E \subseteq X$ such that $0 < \mu(E) < \infty$ and let $f \in L^{p,\infty}(X,\mu)$. By Proposition 1.2.3 we write

$$\int_{E} |f| d\mu = \int_{0}^{\infty} \mu(\{|f| > \lambda\} \cap E) d\lambda$$

$$\leq \int_{0}^{\infty} \min\left(\mu(E), \frac{\|f\|_{L^{p,\infty}}^{p}}{\lambda^{p}}\right) d\lambda$$

$$= \frac{p}{p-1} \mu(E)^{1-\frac{1}{p}} \|f\|_{L^{p,\infty}},$$
(1.2.8)

which follows by splitting the integral at $\lambda = \|f\|_{L^{p,\infty}} \mu(E)^{-\frac{1}{p}}$. Therefore,

$$\|\|f\|\|_{L^{p,\infty}} \le \frac{p}{p-1} \|f\|_{L^{p,\infty}}.$$

As X is σ -finite, we can write $X = \bigcup_{N=1}^{\infty} X_N$ with $X_1 \subseteq X_2 \subseteq \cdots$ and $\mu(X_N) < \infty$. For $\lambda > 0$ let $E_{\lambda} = \{|f| > \lambda\}$ and $E_{\lambda}^N = \{|f| > \lambda\} \cap X_N$. Then we clearly have $\mu(E_{\lambda}^N) \leq \mu(X_N) < \infty$ and $\int_{E_{\lambda}^N} |f| d\mu \geq \lambda \mu(E_{\lambda}^N)$. Let us fix $\lambda > 0$ and $N \in \mathbf{Z}^+$. If $\mu(E_{\lambda}^N) > 0$, then

$$\left\| \left\| f \right\| \right\|_{L^{p,\infty}} = \sup_{0 < \mu(E) < \infty} \mu(E)^{-1 + \frac{1}{p}} \int_{E} |f| \, d\mu \ge \mu(E_{\lambda}^{N})^{-1 + \frac{1}{p}} \lambda \mu(E_{\lambda}^{N}) = \lambda \mu(E_{\lambda}^{N})^{\frac{1}{p}},$$