122 3 Singular Integrals

In general, the difference of two Calderón–Zygmund operators (Definition 3.3.1) associated with the same function K on $\mathbf{R}^n \setminus \{0\}$ and two sequences δ_k^1 and δ_k^2 is cI, where c is a constant satisfying $|c| \le 2A_3$.

Exercises

3.3.1. Prove the equality in (3.3.1).

3.3.2. Let F be a bounded \mathscr{C}^1 function on the real line with F' in $L^\infty(\mathbf{R})$ that has the property

$$\sup_{-\infty < A < B < \infty} \left| \int_{A}^{B} F(t) \, dt \right| < \infty.$$

Prove that the kernel

$$K(x) = \frac{F(\log|x|)}{|x|^n}, \qquad x \in \mathbf{R}^n \setminus \{0\},$$

satisfies (3.3.3), (3.3.4), and (3.3.5). An example of such a function is $F(t) = \sin t/t$. A multitude of examples arise by taking F = G', where G, G', G'' are bounded.

3.3.3. Let $\delta > 0$ and η be a smooth function on the real line supported in [-2,2] and equal to 1 on the interval [-1,1]. Show that the kernels

$$K_1(x) = \frac{\sin(|x|^{-\delta})}{|x|^n} (1 - \eta(|x|)), \qquad K_2(x) = \frac{\sin(|x|^{\delta})}{|x|^n} \eta(|x|),$$

defined on $\mathbb{R}^n \setminus \{0\}$, satisfy (3.3.3), (3.3.2), and (3.3.5).

3.3.4. Suppose that a function K on $\mathbb{R}^n \setminus \{0\}$ satisfies condition (3.3.3) with constant A_1 and condition (3.3.4) with constant A_2 . Let $A'_1 = A_1 \omega_{n-1} \log 2$.

(a) Show that the functions $K(x)\chi_{|x|\geq\varepsilon}$ also satisfy condition (3.3.4) uniformly in $\varepsilon>0$ with constant $\max(A_1',A_2)$ in place of A_2 .

(b) Use part (a) to obtain that the truncations $K(x)\chi_{|x|< N}$ satisfy (3.3.4) uniformly in N > 0, with constant $2 \max(A'_1, A_2)$.

(c) Deduce from parts (a), (b) that the double truncations $K^{(\varepsilon,N)}(x) = K(x)\chi_{\varepsilon \leq |x| < N}$ also satisfy condition (3.3.4) uniformly in $N, \varepsilon > 0$ with constant $2 \max(A_1', A_2)$. [*Hint:* Part (b): Write $K(x)\chi_{|x| < N} = K(x) - K(x)\chi_{|x| \geq N}$. Part (c): Use $K(x)\chi_{\varepsilon \leq |x| < N} = K(x)\chi_{|x| \geq \varepsilon} - K(x)\chi_{|x| \geq N}$.]

3.3.5. (a) Prove that for all $x, y \in \mathbf{R}^n$ that satisfy $0 \neq x \neq y$ we have

$$\left| \frac{x - y}{|x - y|} - \frac{x}{|x|} \right| \le 2 \frac{|y|}{|x|}.$$

(b) Let Ω be a bounded function with mean value zero on the sphere S^{n-1} . Suppose that for some $\alpha \in (0,1)$, Ω satisfies the *Lipschitz condition*