2.1 Maximal Functions

Let $a = \int_{\mathbf{R}^n} K(x) dx$. Then for all $f \in L^p(\mathbf{R}^n)$ and $1 \le p < \infty$, $(f * K_{\varepsilon})(x) \to af(x)$ for almost all $x \in \mathbf{R}^n$ as $\varepsilon \to 0$.

Proof. Use Theorem 1.2.21 instead of Theorem 1.2.19 in the proof of Corollary 2.1.17. \Box

The following application of the Lebesgue differentiation theorem uses a simple *stopping-time argument*. This is the sort of argument in which a selection procedure stops when it is exhausted at a certain scale and is then repeated at the next scale. A certain refinement of the following proposition is of fundamental importance in the study of singular integrals given in Chapter 5.

Proposition 2.1.20. Given a nonnegative integrable function f on \mathbb{R}^n and $\alpha > 0$, there exists a collection of disjoint (possibly empty) open cubes Q_j such that for almost all $x \in (\bigcup_j Q_j)^c$ we have $f(x) \le \alpha$ and

$$\alpha < \frac{1}{|Q_j|} \int_{Q_j} f(t) dt \le 2^n \alpha.$$
(2.1.21)

Proof. The proof provides an excellent paradigm of a stopping-time argument. Start by decomposing \mathbb{R}^n as a union of cubes of equal size, whose interiors are disjoint, and whose diameter is so large that $|Q|^{-1} \int_Q f(x) dx \leq \alpha$ for every Q in this mesh. This is possible since f is integrable and $|Q|^{-1} \int_Q f(x) dx \to 0$ as $|Q| \to \infty$. Call the union of these cubes \mathscr{E}_0 .

Divide each cube in the mesh into 2^n congruent cubes by bisecting each of the sides. Call the new collection of cubes \mathcal{E}_1 . Select a cube Q in \mathcal{E}_1 if

$$\frac{1}{|\mathcal{Q}|} \int_{\mathcal{Q}} f(x) \, dx > \alpha \tag{2.1.22}$$

and call the set of all selected cubes \mathscr{S}_1 . Now subdivide each cube in $\mathscr{E}_1 \setminus \mathscr{S}_1$ into 2^n congruent cubes by bisecting each of the sides as before. Call this new collection of cubes \mathscr{E}_2 . Repeat the same procedure and select a family of cubes \mathscr{S}_2 that satisfy (2.1.22). Continue this way ad infinitum and call the cubes in $\bigcup_{m=1}^{\infty} \mathscr{S}_m$ "selected." If Q was selected, then there exists Q_1 in \mathscr{E}_{m-1} containing Q that was not selected at the (m-1)th step for some $m \ge 1$. Therefore,

$$\alpha < \frac{1}{|\mathcal{Q}|} \int_{\mathcal{Q}} f(x) \, dx \leq 2^n \frac{1}{|\mathcal{Q}_1|} \int_{\mathcal{Q}_1} f(x) \, dx \leq 2^n \alpha \, .$$

Now call *F* the closure of the complement of the union of all selected cubes. If $x \in F$, then there exists a sequence of cubes containing *x* whose diameter shrinks down to zero such that the average of *f* over these cubes is less than or equal to α . By Corollary 2.1.16, it follows that $f(x) \leq \alpha$ almost everywhere in *F*. This proves the proposition.

In the proof of Proposition 2.1.20 it was not crucial to assume that f was defined on all \mathbb{R}^n , but only on a cube. We now give a local version of this result.