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Let a =
∫

Rn K(x)dx. Then for all f ∈ Lp(Rn) and 1 ≤ p < ∞, ( f ∗Kε)(x)→ a f (x)
for almost all x ∈ Rn as ε → 0.

Proof. Use Theorem 1.2.21 instead of Theorem 1.2.19 in the proof of Corollary
2.1.17. �

The following application of the Lebesgue differentiation theorem uses a simple
stopping-time argument. This is the sort of argument in which a selection procedure
stops when it is exhausted at a certain scale and is then repeated at the next scale. A
certain refinement of the following proposition is of fundamental importance in the
study of singular integrals given in Chapter 5.

Proposition 2.1.20. Given a nonnegative integrable function f on Rn and α > 0,
there exists a collection of disjoint (possibly empty) open cubes Q j such that for
almost all x ∈

(⋃
j Q j
)c we have f (x)≤ α and

α <
1
|Q j|

∫
Q j

f (t)dt ≤ 2n
α . (2.1.21)

Proof. The proof provides an excellent paradigm of a stopping-time argument. Start
by decomposing Rn as a union of cubes of equal size, whose interiors are disjoint,
and whose diameter is so large that |Q|−1 ∫

Q f (x)dx ≤ α for every Q in this mesh.
This is possible since f is integrable and |Q|−1 ∫

Q f (x)dx→ 0 as |Q| → ∞. Call the
union of these cubes E0.

Divide each cube in the mesh into 2n congruent cubes by bisecting each of the
sides. Call the new collection of cubes E1. Select a cube Q in E1 if

1
|Q|

∫
Q

f (x)dx > α (2.1.22)

and call the set of all selected cubes S1. Now subdivide each cube in E1 \S1 into
2n congruent cubes by bisecting each of the sides as before. Call this new collection
of cubes E2. Repeat the same procedure and select a family of cubes S2 that satisfy
(2.1.22). Continue this way ad infinitum and call the cubes in

⋃
∞
m=1 Sm “selected.”

If Q was selected, then there exists Q1 in Em−1 containing Q that was not selected
at the (m−1)th step for some m≥ 1. Therefore,

α <
1
|Q|

∫
Q

f (x)dx≤ 2n 1
|Q1|

∫
Q1

f (x)dx≤ 2n
α .

Now call F the closure of the complement of the union of all selected cubes. If
x ∈ F , then there exists a sequence of cubes containing x whose diameter shrinks
down to zero such that the average of f over these cubes is less than or equal to α .
By Corollary 2.1.16, it follows that f (x) ≤ α almost everywhere in F . This proves
the proposition. �

In the proof of Proposition 2.1.20 it was not crucial to assume that f was defined
on all Rn, but only on a cube. We now give a local version of this result.


