2.1 Maximal Functions

If *f* is locally integrable, then by considering the average of *f* over the ball B(x, |x| + R), which contains the ball B(0, R), we obtain

$$\mathcal{M}(f)(x) \ge \frac{\int_{B(0,R)} |f(y)| \, dy}{\nu_n (|x|+R)^n},\tag{2.1.1}$$

for all $x \in \mathbf{R}^n$, where v_n is the volume of the unit ball in \mathbf{R}^n . An interesting consequence of (2.1.1) is the following: suppose that $f \neq 0$ on a set of positive measure E, then $\mathcal{M}(f)$ is not in $L^1(\mathbf{R}^n)$. In other words, if f is in $L^1_{loc}(\mathbf{R}^n)$ and $\mathcal{M}(f)$ is in $L^1(\mathbf{R}^n)$, then f = 0 a.e. To see this, integrate (2.1.1) over the ball \mathbf{R}^n to deduce that $\|f\chi_{B(0,R)}\|_{L^1} = 0$ and thus f(x) = 0 for almost all x in the ball B(0,R). Since this is valid for all R = 1, 2, 3, ..., it follows that f = 0 a.e. in \mathbf{R}^n .

Another remarkable locality property of \mathcal{M} is that if $\mathcal{M}(f)(x_0) = 0$ for some x_0 in \mathbb{R}^n , then f = 0 a.e. To see this, we take $x = x_0$ in (2.1.1) to deduce that $\|f\chi_{B(0,R)}\|_{L^1} = 0$ and as before we have that f = 0 a.e. on every ball centered at the origin, i.e., f = 0 a.e. in \mathbb{R}^n .

A related analogue of $\mathcal{M}(f)$ is its uncentered version M(f), defined as the supremum of all averages of f over all open balls containing a given point.

Definition 2.1.3. The uncentered Hardy–Littlewood maximal function of f,

$$M(f)(x) = \sup_{\substack{\delta > 0 \\ |y-x| < \delta}} \operatorname{Avg}_{B(y,\delta)} |f|,$$

is defined as the supremum of the averages of |f| over all open balls $B(y, \delta)$ that contain the point *x*.

Clearly $\mathcal{M}(f) \leq M(f)$; in other words, *M* is a larger operator than \mathcal{M} . However, $M(f) \leq 2^n \mathcal{M}(f)$ and the boundedness properties of *M* are identical to those of \mathcal{M} .

Example 2.1.4. On **R**, let *f* be the characteristic function of the interval I = [a,b]. For $x \in (a,b)$, clearly M(f)(x) = 1. For x > b, a calculation shows that the largest average of *f* over all intervals $(y - \delta, y + \delta)$ that contain *x* is obtained when $\delta = \frac{1}{2}(x-a)$ and $y = \frac{1}{2}(x+a)$. Similarly, when x < a, the largest average is obtained when $\delta = \frac{1}{2}(b-x)$ and $y = \frac{1}{2}(b+x)$. We conclude that

$$M(f)(x) = \begin{cases} (b-a)/|x-b| & \text{when } x \le a, \\ 1 & \text{when } x \in (a,b), \\ (b-a)/|x-a| & \text{when } x \ge b. \end{cases}$$

Observe that *M* does not have a jump at x = a and x = b and is in fact equal to the function $\left(1 + \frac{\operatorname{dist}(x,I)}{|I|}\right)^{-1}$.

We are now ready to obtain some basic properties of maximal functions. We need the following simple covering lemma.