
8 1 Lp Spaces and Interpolation

Consider the sequence {gm}∞
m=1 ={ f1,1, f2,1, f2,2, f3,1, f3,2, f3,3, . . .}. Observe that

|{x : fk, j(x)> 0}|= 1/k , 1≤ j ≤ k.

Therefore, gm converges to 0 in measure as m→ ∞. Likewise, observe that

∥∥ fk,k
∥∥

Lp,∞ = sup
α>0

α|{x : fk,k(x)> α}|1/p ≥ (k−1/k)1/p

k1/p → 1 , as k→ ∞,

which implies that fk,k does not converge to 0 in Lp,∞, hence so does gm.

It turns out that every sequence convergent in Lp(X ,µ) or in Lp,∞(X ,µ) has a
subsequence that converges a.e. to the same limit.

Theorem 1.1.11. Let fn and f be complex-valued measurable functions on a mea-
sure space (X ,µ) and suppose that fn converges to f in measure. Then some subse-
quence of fn converges to f µ-a.e.

Proof. For all k = 1,2, . . . choose inductively nk such that

µ({x ∈ X : | fnk(x)− f (x)|> 2−k})< 2−k (1.1.16)

and such that n1 < n2 < · · ·< nk < · · · . Define the sets

Ak = {x ∈ X : | fnk(x)− f (x)|> 2−k} .

Equation (1.1.16) implies that

µ

( ∞⋃
k=m

Ak

)
≤

∞

∑
k=m

µ(Ak)≤
∞

∑
k=m

2−k = 21−m (1.1.17)

for all m = 1,2,3, . . . . It follows from (1.1.17) that

µ

( ∞⋃
k=1

Ak

)
≤ 1 < ∞ . (1.1.18)

Using (1.1.17) and (1.1.18), we conclude that the sequence of the measures of the
sets {

⋃
∞
k=m Ak}∞

m=1 converges as m→ ∞ to

µ

( ∞⋂
m=1

∞⋃
k=m

Ak

)
= 0 . (1.1.19)

To finish the proof, observe that the null set in (1.1.19) contains the set of all x ∈ X
for which fnk(x) does not converge to f (x). �

In many situations we are given a sequence of functions and we would like to
extract a convergent subsequence. One way to achieve this is via the next theorem,
which is a useful variant of Theorem 1.1.11. We first give a relevant definition.


