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on S0(X) and T is bounded from Lp,r(X) to Lq,r(Y ). Thus T is the unique bounded
extension of T on the entire space Lp,r(X). For details, see Exercise 1.4.17. □

Proposition 1.4.21. For all 0 < p,r < ∞ the space S0(X) is dense in Lp,r(X).

Proof. Let f ∈ Lp,r(X) and assume first that f ≥ 0. Using (1.4.5) and the fact that
d f is decreasing on [0,∞), we obtain for any n ∈ Z+,
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which implies that d f (2−n)< ∞. Likewise, again in view of (1.4.5), we have
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which implies that limn→∞ d f (2n) = 0. Thus, for any n ∈ Z+, there exists kn ∈ N
such that
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Let En =
{

x ∈ X : 2−n < f (x)≤ 2kn
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and note that µ (En)≤ d f (2−n)< ∞ for each
n ∈ Z+. We write f χEn in binary expansion, that is, f χEn(x) = ∑
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where d j(x) = 0 or 1. Let B j = {x ∈ En : d j(x) = 1}. Then, µ(B j) ≤ µ(En) and
f χEn can be expressed as f χEn = ∑
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Set fn = ∑
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2− jχB j . It is obvious that fn ∈ S+0 (X) and fn ≤ f χEn ≤ f . Ob-
serve that when x ∈ En, we have
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and that when x /∈ En, we have fn(x) = 0 and f (x) > 2kn or f (x) ≤ 2−n. It follows
from these facts that
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Hence, for 2−n ≤ t < ∞ one has
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This implies that limn→∞( f − fn)
∗(t) = 0 for all t ∈ (0,∞). By Proposition 1.4.5 (4),

(6), we obtain for all t ∈ (0,∞)

( f − fn)
∗(t)≤ f ∗(t/2)+ f ∗n (t/2)≤ 2 f ∗(t/2).


