1.4 Lorentz Spaces

on $S_0(X)$ and \overline{T} is bounded from $L^{p,r}(X)$ to $L^{q,r}(Y)$. Thus \overline{T} is the unique bounded extension of T on the entire space $L^{p,r}(X)$. For details, see Exercise 1.4.17.

Proposition 1.4.21. For all $0 < p, r < \infty$ the space $S_0(X)$ is dense in $L^{p,r}(X)$.

Proof. Let $f \in L^{p,r}(X)$ and assume first that $f \ge 0$. Using (1.4.5) and the fact that d_f is decreasing on $[0,\infty)$, we obtain for any $n \in \mathbb{Z}^+$,

$$\begin{split} \|f\|_{L^{p,r}(X)}^{r} &= p \int_{0}^{\infty} \left[d_{f}(s)^{\frac{1}{p}} s \right]^{r} \frac{ds}{s} \\ &\geq p \int_{0}^{2^{-n}} \left[d_{f}(2^{-n}) \right]^{\frac{r}{p}} s^{r-1} ds \\ &= \frac{p 2^{-nr}}{r} \left[d_{f}(2^{-n}) \right]^{\frac{r}{p}}, \end{split}$$

which implies that $d_f(2^{-n}) < \infty$. Likewise, again in view of (1.4.5), we have

$$||f||_{L^{p,r}(X)}^{r} \ge p \int_{0}^{2^{n}} \left[d_{f}(s) \right]^{\frac{r}{p}} s^{r-1} ds \ge \frac{p2^{nr}}{r} \left[d_{f}(2^{n}) \right]^{\frac{r}{p}},$$

which implies that $\lim_{n\to\infty} d_f(2^n) = 0$. Thus, for any $n \in \mathbb{Z}^+$, there exists $k_n \in \mathbb{N}$ such that

$$d_f(2^{k_n}) = \mu(\{x \in X : f(x) > 2^{k_n}\}) < 2^{-n}.$$

Let $E_n = \{x \in X : 2^{-n} < f(x) \le 2^{k_n}\}$ and note that $\mu(E_n) \le d_f(2^{-n}) < \infty$ for each $n \in \mathbb{Z}^+$. We write $f\chi_{E_n}$ in binary expansion, that is, $f\chi_{E_n}(x) = \sum_{j=-k_n}^{\infty} d_j(x)2^{-j}$, where $d_j(x) = 0$ or 1. Let $B_j = \{x \in E_n : d_j(x) = 1\}$. Then, $\mu(B_j) \le \mu(E_n)$ and $f\chi_{E_n}$ can be expressed as $f\chi_{E_n} = \sum_{j=-k_n}^{\infty} 2^{-j}\chi_{B_j}$.

Set $f_n = \sum_{j=-k_n}^n 2^{-j} \chi_{B_j}$. It is obvious that $f_n \in S_0^+(X)$ and $f_n \leq f \chi_{E_n} \leq f$. Observe that when $x \in E_n$, we have

$$f(x) - f_n(x) = \sum_{j=n+1}^{\infty} 2^{-j} \chi_{B_j} \le 2^{-n},$$

and that when $x \notin E_n$, we have $f_n(x) = 0$ and $f(x) > 2^{k_n}$ or $f(x) \le 2^{-n}$. It follows from these facts that

$$d_{f-f_n}(2^{-n}) = \mu\left(E_n \cap \{f - f_n > 2^{-n}\}\right) + \mu\left(E_n^c \cap \{f - f_n > 2^{-n}\}\right) < 2^{-n}.$$

Hence, for $2^{-n} \le t < \infty$ one has

$$(f-f_n)^*(t) \le (f-f_n)^*(2^{-n}) = \inf\{s > 0 : d_{f-f_n}(s) \le 2^{-n}\} \le 2^{-n}.$$

This implies that $\lim_{n\to\infty} (f - f_n)^*(t) = 0$ for all $t \in (0,\infty)$. By Proposition 1.4.5 (4), (6), we obtain for all $t \in (0,\infty)$

$$(f - f_n)^*(t) \le f^*(t/2) + f_n^*(t/2) \le 2f^*(t/2).$$