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Additionally, if 0 < p,r < o and if T is linear (or sublinear with nonnegative val-
ues), then it admits a unique bounded extension from LV (X) to LY"(Y, V) such that
(1.4.24) holds for all f in LP".

Before we give the proof of Theorem 1.4.19, we state and prove a lemma that is
interesting on its own.

Lemma 1.4.20. Let 0 < p < o and 0 < g < o and let (X,p), (Y,Vv) be o-finite
measure spaces. Let T be a quasi-linear operator defined on S(X) and taking values
in the set of measurable functions on Y. Suppose that there exists a constant M > 0
such that for all measurable subsets A of X of finite measure we have

1T () |0 < M(a)7. (1.4.25)

Then for all o with 0 < o < min(g, l(l)(;gzi() there exists a constant C(p,q,K, ) >0
such that for all functions f in So(X) we have the estimate

IT(A)) o < Cp.a. K, )M || f]| 1 (1.4.26)

where

2
C(p g K, o) =25 770 K° (qqa> " (1-27%) "% (log2) % .
Proof. A function f in So(X) can be written as f = hy — hy + i(h3 — hs), where
hj are in S§ (X). We write f = fi — f> +i(f3 — f4), where fi = max(h; — h,0),
fo =max(—(h — h2),0), f3 = max(hs — h4,0), and fu = max(—(h3 — h4),0). We
note that f; lie in S§ (X); indeed, if hy = ¥,,27 ‘x4, and hy = ¥, 2 ¥ xp,, where both
sums are finite, then

fi= Y o 2w+ Y 2 =27 2am8, -
£: AgN(UgBi)=0 (€,k): £<k, AyNB 70

Since the second sum is equal to Z’;:[ 4127 Xa,nB,» We obtain that f € 8§ (X).
Likewise we can show that f», f3, f4 lie in SJ (X). Moreover, we have f; <|f| and
Proposition 1.4.5(4), yields

If7lra) < W lmae

for all j =1,2,3,4. Suppose now that (1.4.26) holds for functions in SJ (X) with
constant C'(p, g, &) in place of C(p,q,K, o). By the quasi-linearity of T we have



