
Appendix I
Taylor’s and Mean Value Theorem in Several
Variables

I.1 Mutlivariable Taylor’s Theorem

For a multiindex α = (α1, . . . ,αn) ∈ (Z+∪{0})n, we denote by |α|= α1 + · · ·+αn
its size, we define α! = α1! · · ·αn! its factorial, and we set

hα = hα1
1 · · ·hαn

n ,

where h = (h1, . . . ,hn); here 00 = 1.
Let k ∈ Z+∪{0}. Suppose a real-valued C k+1 function f is defined on an open

convex subset Ω of Rn. Suppose that x ∈ Ω and x+h ∈ Ω . Then we have the Taylor
expansion formula

f (x+h) = ∑
|α|≤k

∂ α f (x)
α!

hα +R(h,x,k) ,

where the remainder R(h,x,k) can be expressed in integral form

R(h,x,k) = (k+1) ∑
|α|=k+1

hα

α!

∫ 1

0
(1− t)k

∂
α f (x+ th)dt.

If in addition f is real-valued, then the remainder can be expressed in Langrange’s
mean value form

R(h,x,k) = ∑
|α|=k+1

∂ α f (x+ ch)
α!

hα

for some c ∈ (0,1).
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608 I Taylor’s and Mean Value Theorem in Several Variables

9.2 The Mean value Theorem

Suppose that f is as above and k = 0. Then for given x,y ∈ Ω we have

f (y)− f (x) =
∫ 1

0
∇ f ((1− t)x+ ty) · (y− x)dt

and moreover, if f is real-valued, then

f (y)− f (x) = ∇ f ((1− c)x+ cy) · (y− x)

for some c ∈ (0,1). This is a special case of Taylor’s formula when k = 0.



Chapter 10
The Whitney Decomposition of Open Sets in Rn

10.1 Decomposition of Open Sets

An arbitrary open set in Rn can be decomposed as a union of disjoint cubes whose
lengths are proportional to their distance from the boundary of the open set. See, for
instance, Figure 10.1 when the open set is the unit disk in R2. For a given cube Q in
Rn, we denote by ℓ(Q) its length.

Proposition. Let Ω be an open nonempty proper subset of Rn. Then there exists a
family of closed dyadic cubes {Q j} j (called the Whitney cubes of Ω ) such that
(a)
⋃

j Q j = Ω and the Q j’s have disjoint interiors.
(b)

√
nℓ(Q j)≤ dist (Q j,Ω

c)≤ 4
√

nℓ(Q j). Thus 10
√

nQ j meets Ω c.
(c) If the boundaries of two cubes Q j and Qk touch, then

1
4
≤

ℓ(Q j)

ℓ(Qk)
≤ 4 .

(d) For a given Q j there exist at most 12n −4n cubes Qk that touch it.
(e) Let 0 < ε < 1/4. If Q∗

j has the same center as Q j and ℓ(Q∗
j) = (1+ε)ℓ(Q j) then

χΩ ≤ ∑
j

χQ∗
j
≤ 12n −4n +1 .

Proof. Let Dk be the collection of all dyadic cubes of the form

{(x1, . . . ,xn) ∈ Rn : m j2−k ≤ x j < (m j +1)2−k} ,

where m j ∈ Z. Observe that each cube in Dk gives rise to 2n cubes in Dk+1 by
bisecting each side.

Write the set Ω as the union of the sets

Ωk = {x ∈ Ω : 2
√

n2−k < dist(x,Ω c)≤ 4
√

n2−k}
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over all k ∈ Z. Let F ′ be the set of all cubes Q in Dk for some k ∈ Z such that
Q∩Ωk ̸= /0. We show that the collection F ′ satisfies property (b). Let Q ∈ F ′ and
pick k ∈ Z such that Q ∈ Dk and x ∈ Ωk ∩Q. Observe that

√
n2−k ≤ dist(x,Ω c)−

√
nℓ(Q)≤ dist(Q,Ω c)≤ dist(x,Ω c)≤ 4

√
n2−k ,

which proves (b).
Next we observe that ⋃

Q∈F ′
Q = Ω .

Indeed, every Q in F ′ is contained in Ω (since it has positive distance from its
complement) and every x ∈ Ω lies in some Ωk and in some dyadic cube in Dk.

Fig. 10.1 The Whitney decomposition of the unit disk.

The problem is that the cubes in the collection F ′ may not be disjoint. We have
to refine the collection F ′ by eliminating those cubes that are contained in some
other cubes in the collection. Recall that two dyadic cubes have disjoint interiors
or else one contains the other. For every cube Q in F ′ we can therefore consider
the unique maximal cube Qmax in F ′ that contains it. Two different such maximal
cubes must have disjoint interiors by maximality. Now set F = {Qmax : Q ∈ F ′}.

The collection of cubes {Q j} j =F clearly satisfies (a) and (b), and we now turn
our attention to the proof of (c). Observe that if Q j and Qk in F touch then

√
nℓ(Q j)≤ dist(Q j,Ω

c)≤ dist(Q j,Qk)+dist(Qk,Ω
c)≤ 0+4

√
nℓ(Qk) ,

which proves (c). To prove (d), note that any cube Q in Dk is touched by exactly
3n −1 other cubes in Dk. But each cube Q in Dk can contain at most 4n cubes of F
of length at least one-quarter of the length of Q. This fact combined with (c) yields
(d). To prove (e), notice that each Q∗

j is contained in Ω by part (b). If x ∈ Ω , then


