1 L^p Spaces and Interpolation

noting that the preceding integral converges since $(g_{N,M})^*(s) \leq M \chi_{[0,\mu(K_N)]}(s)$. It follows that $f^*(t) \leq c_{p,q} M^{q'-1}[\mu(K_N)^{q'/p'-1} + (t/2)^{q'/p'-1} + \log \frac{2\mu(K_N)}{t}]$ and also $f^*(t) = 0$ when $t > 2\mu(K_N)$, thus the function f defined in (1.4.16) lies in $L^{p,q}(X)$. We have the following calculation regarding the $L^{p,q}$ norm of f:

$$\begin{split} \|f\|_{L^{p,q}} &= \left(\int_0^\infty t^{\frac{q}{p}} \left[\int_{t/2}^\infty s^{\frac{q'}{p'}-1} (g_{N,M})^* (s)^{q'-1} \frac{ds}{s}\right]^q \frac{dt}{t}\right)^{\frac{1}{q}} \\ &\leq C_1(p,q) \left(\int_0^\infty (t^{\frac{1}{p'}} (g_{N,M})^* (t))^{q'} \frac{dt}{t}\right)^{\frac{1}{q}} \\ &= C_1(p,q) \|g_{N,M}\|_{L^{p',q'}}^{q'/q} < \infty, \end{split}$$
(1.4.17)

which is a consequence of Hardy's second inequality in Exercise 1.2.8 with b = q/p. Using (1.4.15) and (1.4.17) we deduce that

$$\int_0^\infty f^*(t)(g_{N,M})^*(t)\,dt \le \|T\| \, \|f\|_{L^{p,q}} \le C_1(p,q)\|T\| \, \|g_{N,M}\|_{L^{p',q'}}^{q'-1}.$$
(1.4.18)

On the other hand, we have

$$\begin{split} \int_{0}^{\infty} f^{*}(t)(g_{N,M})^{*}(t) dt &\geq \int_{0}^{\infty} \int_{t/2}^{t} s^{\frac{q'}{p'}-1}(g_{N,M})^{*}(s)^{q'-1} \frac{ds}{s} (g_{N,M})^{*}(t) dt \\ &\geq \int_{0}^{\infty} (g_{N,M})^{*}(t)^{q'} \int_{t/2}^{t} s^{\frac{q'}{p'}-1} \frac{ds}{s} dt \\ &= C_{2}(p,q) \|g_{N,M}\|_{L^{p',q'}}^{q'}. \end{split}$$
(1.4.19)

Combining (1.4.18) and (1.4.19), and using the fact that $||g_{N,M}||_{L^{p',q'}} < \infty$, we obtain $||g_{N,M}||_{L^{p',q'}} \le C(p,q)||T||$. Letting $N, M \to \infty$ we deduce $||g||_{L^{p',q'}} \le C(p,q)||T||$ and this proves the reverse inequality required to complete case (vi).

(vii) For a complete characterization of this space, we refer to [83].

(viii) The dual of $L^{\infty} = L^{\infty,\infty}$ can be identified with the set of all bounded finitely additive set functions; see [99].

Remark 1.4.17. Some parts of Theorem 1.4.16 are false if *X* is atomic. For instance, the dual of $\ell^p(\mathbf{Z})$ contains ℓ^{∞} when $0 and thus it is not equal to <math>\{0\}$.

1.4.4 The Off-Diagonal Marcinkiewicz Interpolation Theorem

We now present the main result of this section, the off-diagonal extension of Marcinkiewicz's interpolation theorem (Theorem 1.3.2). For a measure space (X, μ) , let S(X) be the space of finitely simple functions on X and $S_0^+(X)$ be the subset of S(X) of functions of the form